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TherapeuTic advances in 
drug safety

Perspective review: Will generative AI make 
common data models obsolete in future 
analyses of distributed data networks?
Jeffery L. Painter , Darmendra Ramcharran and Andrew Bate

Abstract: Integrating real-world healthcare data is challenging due to diverse formats and 
terminologies, making standardization resource-intensive. While Common Data Models 
(CDMs) facilitate interoperability, they often cause information loss, exhibit semantic 
inconsistencies, and are labor-intensive to implement and update. We explore how generative 
artificial intelligence (GenAI), especially large language models (LLMs), could make CDMs 
obsolete in quantitative healthcare data analysis by interpreting natural language queries 
and generating code, enabling direct interaction with raw data. Knowledge graphs (KGs) 
standardize relationships and semantics across heterogeneous data, preserving integrity. This 
perspective review proposes a fourth generation of distributed data network analysis, building 
on previous generations categorized by their approach to data standardization and utilization. 
It emphasizes the potential of GenAI to overcome the limitations CDMs with GenAI-enabled 
access, KGs, and automatic code generation. A data commons may further enhance this 
capability, and KGs may well be needed to enable effective GenAI. Addressing privacy, security, 
and governance is critical; any new method must ensure protections comparable to CDM-
based models. Our approach would aim to enable efficient, real-time analyses across diverse 
datasets and enhance patient safety. We recommend prioritizing research to assess how 
GenAI can transform quantitative healthcare data analysis by overcoming current limitations.
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Plain language summary 

Perspective Review: Will generative AI make common data models obsolete in future 
analyses of distributed data networks?

This perspective review explores whether Artificial Intelligence (AI) can revolution-
ize healthcare data analysis by reducing the current reliance on Common Data Models 
(CDMs), which encompass the following elements:

•  CDMs are approaches that standardize diverse healthcare to a single shared format to 
enable efficiencies in data management and analyses using the same analysis syntax 
and analytic tools.

•  Although CDMs have strengths, they also have limitations, such as high costs, potential 
loss of important details, significant effort to produce and maintain, and delays in data 
availability due to lengthy data processing steps.

•  With the rapid growth of healthcare data, effectively analyzing it is crucial for patient 
safety and public health.

•  AI may offer an alternative solution by analyzing data directly in its original form, reduc-
ing costs, preserving data details, and enabling real-time insights that support better 
patient outcomes and safer medication use.

https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/taw
mailto:jeffery.l.painter@gsk.com
http://crossmark.crossref.org/dialog/?doi=10.1177%2F20420986251332743&domain=pdf&date_stamp=2025-04-21


2 journals.sagepub.com/home/taw

Volume 16
TherapeuTic advances in 
drug safety

This review investigates challenges currently associated with CDMs and explores how AI, 
particularly generative AI, can directly analyze raw data without the need for standardiza-
tion. We discuss the following:

•  How AI can interpret complex questions and generate accurate answers from raw data, 
enabling more timely analyses of real-world data.

•  While CDMs may still be necessary in the short term, AI has the potential to eventu-
ally replace them, improving patient care and safety outcomes by providing faster and 
more precise insights.

•  This perspective could lead to new methods of using healthcare data to inform deci-
sion-making and enhance treatment outcomes.

•  By adopting advanced AI technologies, healthcare providers and researchers can bet-
ter understand treatment risks and benefits, make more informed decisions, and ulti-
mately improve patient safety and public health.

Keywords: Common Data Model (CDM), distributed data network, drug safety, generative AI, 
pharmacovigilance
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Introduction
This manuscript represents a perspective review, 
synthesizing insights from literature and expert 
consensus to evaluate the evolving role of 
Common Data Models (CDMs) in distributed 
analytics.

Over the past several decades, electronic health-
care databases have evolved from simple medical 
record repositories into sophisticated tools for 
complex epidemiological research, informing reg-
ulatory, clinical, and policy decisions.1 Alongside 
randomized controlled trials, registries, and spon-
taneous reports, they are pivotal for understand-
ing and ensuring medication safety during drug 
development and clinical use.

These transformations can largely be categorized 
into generational developments that we have 
defined as follows (Figure 1). This generational 
framework is based on the authors’ synthesis of 
advancements in healthcare data analysis and 
their implications for real-world evidence genera-
tion. The first generation (initiated circa 1970) 
featured proprietary systems relying on single-
database analyses without standardized for-
mats.2–4 The second generation (initiated circa 

1991) introduced widely used coding standards 
and enterprise databases,5 but data sharing 
involved individual contracts and bespoke cross-
database comparisons or substantial computa-
tional resources for meta-analyses across multiple 
proprietary sources.6,7

The third generation, starting in the late 1990s and 
gaining momentum after the FDA Amendments 
Act of 2007 (https://www.fda.gov/regulatory-infor 
mation/selected-amendments-fdc-act/food-and- 
drug-administration-amendments-act-fdaaa- 
2007) and the launch of Mini-Sentinel in 2009,8  
is characterized by the adoption of CDMs.9  
Early CDMs like the Vaccine Safety Datalink’s 
(VSD’s)10,11 demonstrated the feasibility of CDMs. 
While the Observational Medical Outcomes 
Partnership’s (OMOP’s) CDM (https://www.
ohdsi.org/data-standardization/) popularized dis-
tributed data networks (DDNs) and open-source 
methodologies, greatly improving interoperability 
and streamlining analyses across varied data-
bases.5,8,12,13 Once a database was converted to a 
given CDM external standardized analyses could 
be conducted with the agreement of the database 
holder across the database with the need to only 
share summarized results. Similarly, standardized 
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tools and programs developed for the CDM could 
be readily used by the database holder on their 
own data.

However, despite their significant contributions, 
CDMs are not without limitations, particularly 
when scaling analyses across increasingly com-
plex and heterogeneous data sources. The advent 
of generative artificial intelligence (GenAI) and 
knowledge graphs (KGs) heralds a potential 
fourth generation in electronic healthcare data 
utilization. These technologies promise to inte-
grate, analyze, and interpret multiple datasets—
whether for distributed analyses, multi-site 
studies, or other complex use cases—without 
requiring a single standardized format. KGs are 
an evolving research tool and will enable increas-
ingly effective use of GenAI in enabling analyses 
across different data formats.

This paper explores the relevance of CDMs con-
sidering these emerging innovations, examining 
whether GenAI can address current challenges 

and render traditional CDMs less central to 
future healthcare data analyses.

Background

The role of CDMs
History and development of DDNs and CDM utiliza-
tion. The development of DDNs has evolved 
through two primary approaches: the common 
protocol approach and the CDM approach. How-
ever, sometimes a hybrid of the two approaches 
was used where a study-specific CDM was imple-
mented (e.g., earlier studies in the Asian Phar-
macoepidemiology Network (AsPEN)). Early 
networks, such as the Canadian Network for 
Observational Drug Effect Studies (CNODES; 
https://www.cnodes.ca/), and the Pharmacoepide-
miological Research on Outcomes of Therapeu-
tics by a European Consortium (PROTECT; 
https://www.imi.europa.eu/projects-results/ 
project-factsheets/protect), adopted the common 
protocol approach. This method allowed each 

Figure 1. Four generations of quantitative analysis in healthcare data.
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participating site to retain data in its original for-
mat while following standardized study protocols 
and centrally developed code.14,15 While this 
approach enabled data custodians to maintain 
control and minimized the transformation work-
load, it also introduced significant challenges in 
data standardization. Harmonizing data across 
sites proved time-intensive, increasing the com-
plexity of cross-database analyses and limiting 
scalability, particularly in scenarios requiring 
rapid responses.16

To address these limitations, the CDM approach 
was introduced to standardize data structures 
across multiple sites. By transforming data into a 
uniform format before analysis, CDMs aimed to 
enhance comparability and efficiency in multi-
database research. However, the adoption of 
CDMs also presented trade-offs, including 
resource-intensive data transformation processes, 
potential information loss, and challenges in 
achieving consistency across different CDMs.17 
These trade-offs highlight the ongoing need for 
innovative solutions to bridge gaps in interopera-
bility and efficiency within DDNs.

Global perspectives on CDM usage. Internation-
ally, various federated DDNs use CDMs to 
enhance health-related data analyses. An early 
example is the VSD project,10,11 which established 
a CDM to enable secure, federated querying 
across multiple health maintenance organizations. 
This model facilitated vaccine safety surveillance 
while addressing concerns about data privacy and 
confidentiality. Additional examples include the 
Medical Information Database Network (MID-
NET),18 the AsPEN (https://www.aspensig.asia/), 
TriNetX,19 and CNODES.14

Several other global networks have adopted 
CDMs to standardize health data integration. 
Networks like the OMOP and the Observational 
Health Data Sciences and Informatics (OHDSI; 
https://www.ohdsi.org/) program promote a 
highly structured CDM to support cross-network 
interoperability.20 Others, such as the Sentinel 
Initiative (https://www.sentinelinitiative.org/), 
NorPEN (https://www.norpen.org/), IMI 
ConcePTION (https://www.imi-conception.eu/), 
PCORnet (https://pcornet.org/), and the 
DARWIN-EU (https://www.darwin-eu.org), 
European Health Data and Evidence Network 
(EHDEN; https://www.ehden.eu/), employ dif-
ferent CDMs tailored to specific regulatory and 

research needs.21 Meanwhile, initiatives like 
DARWIN-EU facilitate extensive data integra-
tion across diverse European sources using the 
OMOP CDM.

Despite the advantages of standardization, con-
cerns remain regarding information loss when 
mapping diverse datasets to a standardized model. 
These concerns drive ongoing refinement of 
CDMs to balance standardization with the need 
for preserving the granularity and semantic integ-
rity of source data.22,23 Alternative approaches, 
such as the Generalized Data Model (GDM), 
have been proposed to maintain data in their 
native formats while leveraging clinical codes and 
hierarchical structures.22 However, while these 
alternatives mitigate information loss, they also 
introduce complexities in data analysis and may 
extend the timeline required to generate insights.

Challenges in CDM implementation
The adoption and implementation of CDMs pre-
sent several challenges, as identified through lit-
erature reviews and expert discussions in DDN 
analysis. The growing size and diversity of data 
networks intensify the challenges of converting 
data to a standard CDM, compounded by the 
constantly changing healthcare landscape.24 
Integrating heterogeneous data sources compli-
cates the creation of universally applicable CDMs 
essential for drug safety surveillance.25 Ensuring 
semantic consistency is crucial to avoid misinter-
pretations in drug safety analysis.

Kent et al. highlight the difficulties in standardiz-
ing data across healthcare systems, where variabil-
ity in data collection methods can compromise 
analysis reliability.26 Overcoming technological, 
methodological, regulatory, and ethical challenges 
adds complexity to CDM implementation. 
Analysts also struggle with accessing data through 
various vendor tools and employing different strat-
egies, which complicates analyses and prolongs 
insight generation.27 In addition, evolving CDMs 
and their ecosystems can lead to discrepancies in 
outputs, further complicating comparisons across 
different models.3,28,29 Other CDM implementa-
tion challenges, whether using the pragmatic or 
generic approach, are defined as follows:

1. Information loss and data semantics: 
Transitioning data into a CDM can lead to 
substantial information loss, especially if 
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the CDM does not perfectly represent the 
source data.30–34 Garza et  al. emphasized 
that unless a CDM perfectly represents the 
source data, information loss will occur, 
potentially altering the original data seman-
tics.35 This issue is pronounced with regis-
tries, which are heterogeneous in data 
collection and structure.36

2. Resource intensity of data transformation: 
Transforming and maintaining data in a 
CDM is resource-intensive, often deterring 
organizations with limited resources.22 
Frequent updates and ensuring compatibil-
ity across different CDM versions add to 
the complexity and workload.34

3. Variability in data sources: Standardization is 
challenging due to variability in healthcare 
delivery and data capture across regions 
and time, risking the loss of critical data 
nuances.22 Unclear assumptions during 
data conversion can lead to overconfident 
decisions based on flawed interpretations, 
underscoring the need for transparent doc-
umentation and critical evaluation of the 
transformation process.

4. Diverse CDMs and analytical tools: Variations 
in CDMs and their associated analytical 
ecosystems can yield differing results, com-
plicating decision-making.28 Careful selec-
tion of a particular model and its tools is 
essential, as different models may impact 
the generated evidence.

These challenges have prompted the exploration 
of alternative approaches to data integration and 
standardization. One such alternative is the GDM 
proposed by Danese et al..22 The GDM focuses 
on retaining the original semantic representation 
using clinical codes in their native vocabularies 
and preserving hierarchical information and prov-
enance. By avoiding transformation into a stand-
ardized CDM, the GDM aims to reduce 
information loss and maintain data integrity.

However, while the GDM addresses some chal-
lenges of traditional CDMs, it introduces its own 
limitations. Analyses using the GDM can be 
time-consuming, taking longer from ideation to 
execution.22 This extended timeline may impact 
the timeliness of research findings, especially in 
fast-moving fields where rapid insights are criti-
cal. The complexity of working with heterogene-
ous data in native formats may require more 
sophisticated analytical tools and expertise, 

potentially limiting accessibility for some 
organizations.

Challenges with terminologies and ontologies in 
real-world data networks. In real-world data 
(RWD) networks, integrating and analyzing data 
from diverse sources is often complicated by vari-
ations in medical terminologies and ontologies. 
Common terminologies used historically in 
healthcare include coding systems such as the 
International Classification of Diseases (e.g., 
ICD-9 and ICD-10), Systematized Nomencla-
ture of Medicine Clinical Terms (SNOMED 
CT), and Logical Observation Identifiers Names 
and Codes (LOINC). Many other terminologies 
are employed based on specific subject areas, 
such as lab values (e.g., LOINC for laboratory 
tests) and billing codes (e.g., Current Procedural 
Terminology). These terminologies are essential 
for coding diagnoses, procedures, and other clini-
cal information within electronic health and med-
ical records.37 However, the diversity of these 
coding systems necessitates complex mapping 
and cross-referencing to achieve consistent data 
integration, posing significant challenges for data 
harmonization and interoperability in RWD 
networks.

Variability of terminologies across systems: Different 
healthcare systems and regions may use different 
coding systems or versions of the same system. 
For instance, while some systems use ICD-9-CM, 
others have transitioned to ICD-10-CM, and still 
others may use SNOMED CT or Read codes.38 
This variability poses significant challenges for 
data integration and interoperability within RWD 
networks.

Challenges in mapping between terminologies: Cross-
mapping between different coding systems is nec-
essary for integrating data from multiple sources. 
However, these mappings can be complex and 
may not capture the full semantic relationships 
between codes, leading to potential information 
loss or misinterpretation.39 For example, map-
ping from ICD codes to SNOMED CT or 
Medical Dictionary for Regulatory Activities 
(MedDRA) may not always be straightforward 
due to differences in granularity and coding 
structures.40

MedDRA and its integration with RWD terminolo-
gies: In drug safety surveillance, the MedDRA is 
the standard terminology used for coding adverse 
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events.41 Integrating MedDRA-coded data with 
RWD, which often uses ICD codes or other ter-
minologies, requires accurate and reliable map-
ping. Inconsistencies or inaccuracies in these 
mappings can affect the identification and evalu-
ation of safety signals.42

Versioning and updates: Frequent updates and ver-
sion changes in coding systems add another layer 
of complexity. Ensuring that mappings remain 
accurate over time requires continuous mainte-
nance and updates, which can be resource- 
intensive.43

Leveraging AI and KGs: AI and KGs offer promis-
ing solutions to these challenges. AI techniques 
can automate the mapping between different ter-
minologies, enhancing accuracy and reducing 
manual effort.44 KGs can represent complex rela-
tionships between medical concepts across differ-
ent coding systems, facilitating interoperability 
and integration.45

As we anticipate an increasing need for more 
multimodal quantitative surveillance, the ability 
to work rapidly and effectively across diverse 
data streams becomes ever more important. 
Therefore, standards applied to the collection 
and reporting of Individual Case Safety Reports 
and MedDRA, along with their links to RWD 
terminologies like ICD codes, are essential for 
ensuring consistency and reliability in data inte-
gration and analysis.46

By addressing these challenges through the adop-
tion of AI-driven solutions and adherence to 
standardized terminologies, RWD networks can 
improve data interoperability and enhance the 
quality of healthcare analytics, ultimately contrib-
uting to better patient outcomes and more 
informed public health decisions.

Additional challenges faced in multi-database 
analyses
Multi-database analyses leverage data from vari-
ous sources, offering significant benefits for rapid-
cycle analyses and safety signal detection in 
healthcare. However, their widespread adoption 
faces challenges for data analysts, custodians, and 
stakeholders who require rapid, actionable, and 
trustworthy outputs to impact public health and 
patient care.

The continual search for fit-for-purpose RWD.  
Identifying ideal RWD sources that accurately 
represent target populations is inherently chal-
lenging. Each database captures only a subset of 
the population under specific healthcare settings, 
introducing biases related to demographics, geog-
raphy, and healthcare access. Data must be fit for 
specific study purposes and sufficiently recent to 
avoid misleading insights about current practices 
and outcomes.47 Researchers must select data 
sources closely aligned with their objectives, care-
fully weighing strengths and limitations to mini-
mize bias.

For data custodians, maintaining databases in a 
CDM or multiple CDMs poses a significant 
workload, especially if the CDM does not align 
with their core database model. Adopting a CDM 
that does not perfectly map to the primary data 
use may require compromises on data utility or 
adopting a simpler CDM closer to specific data-
bases. This challenge explains why new CDMs 
continue to be proposed despite long-standing 
models like Sentinel and OMOP .22,48

Ensuring trustworthiness requires considering 
how extensively databases and their conversions 
need to be documented and preserved for future 
reanalysis. For data providers, extensive docu-
mentation of transformations can be burden-
some. While replication—achieving consistent 
results using the same methods on similar data—
can suffice,49 stakeholders may demand repro-
ducibility to ensure validity,50 requiring detailed 
documentation and preservation, adding to cus-
todians’ workload.

Trustworthiness also depends on producing 
rapid, actionable outputs impacting public health 
and patient care. Data custodians must balance 
timely data updates with maintaining CDMs, 
which may not align with their primary opera-
tions. This tension underscores the importance of 
developing more adaptable data models or alter-
native approaches that reduce providers’ work-
load while ensuring data remains fit-for-purpose.

Privacy concerns and data sharing complexi-
ties. Privacy regulations, such as the General 
Data Protection Regulation51 in the European 
Union and the Health Insurance Portability and 
Accountability Act52 in the United States, impose 
stringent controls on how personal health 
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information (PHI) is collected, stored, and 
shared. While protecting patient confidentiality, 
these regulations complicate data sharing, often 
causing delays and increased costs.53 Data custo-
dians must invest substantial resources to ensure 
compliance, limiting their ability to share data 
promptly.

Logistical complexities in data sharing, especially 
internationally, are considerable. Differing regu-
lations and standards across countries complicate 
the harmonization of data collection and analysis 
procedures,15,54 necessitating sophisticated data 
governance structures. For stakeholders requiring 
rapid and trustworthy outputs, these delays can 
hinder timely decision-making for public health 
and patient care.

Commercial concerns and data format limitations 
further restrict data availability, as highlighted by 
Walker et al.55 Privacy concerns particularly affect 
access to PHI, such as unstructured clinical notes, 
limiting the depth of possible analysis.

Decentralization versus centralization of data. To 
balance comprehensive analysis with privacy con-
cerns, initiatives like the FDA’s Sentinel network 
maintain decentralized patient-level data while 
centralizing summary data for analysis.53 This 
model permits detailed analyses locally, sharing 
only aggregated results centrally. For data custo-
dians, this allows control over sensitive data, 
ensuring compliance and preserving primary 
database purposes.

However, decentralization can restrict the depth 
and speed of analysis stakeholders desire. 
Sensitive data remains at the source, potentially 
slowing the generation of rapid, actionable 
insights needed for public health decisions and 
patient care. Stakeholders must rely on custodi-
ans’ capacity and willingness to perform analyses 
promptly and accurately. Furthermore, clear gov-
ernance frameworks and secure access protocols 
are essential to ensure sensitive data are only used 
and shared in compliance with regulatory and 
ethical standards.

Technical challenges in data aggregation and  
synthesis. Combining data from multiple data-
bases poses significant technical challenges. Varia-
tions in data capture methodologies, variable 

definitions, coding systems, and missing data 
impact the quality and comparability of the aggre-
gated dataset. Researchers must utilize sophisti-
cated harmonization techniques—often requiring 
complex algorithms and substantial computa-
tional resources—to ensure the combined data 
accurately reflects underlying realities.

For data custodians, the workload to keep a data-
base updated in a CDM or different CDMs is con-
siderable, especially if these models are not integral 
to their primary operations. Adopting a CDM not 
perfectly aligned with primary data use can neces-
sitate compromises or additional resources. This is 
why new CDMs continue to be proposed, aiming 
for closer alignment with specific datasets.48

For stakeholders seeking rapid and trustworthy 
outputs, technical challenges in data aggregation 
can cause delays and affect reliability. Ensuring 
data transformations and analyses are well- 
documented and reproducible enhances trust 
but adds complexity and time to deliver actiona-
ble insights.

Despite these challenges, data custodians recog-
nize two primary benefits of converting to CDMs: 
(1) the ability to use tools developed within an 
ecosystem designed for a given CDM and (2) the 
capability to readily participate in multiple data-
base studies based on that common structure. 
However, we believe that in an AI-enabled future, 
these benefits may be more easily attainable with-
out relying on traditional CDMs. Advanced AI 
techniques could facilitate data integration and 
analysis across heterogeneous databases, reduc-
ing custodians’ burden and accelerating the deliv-
ery of actionable insights to stakeholders.

Discussion
Having examined the evolution of the CDM and 
its current role in PV leads us to wonder what 
comes next. As we alluded to in the introduction, 
we believe there is a strong role to play for GenAI 
and KGs to enable the fourth generation of safety 
surveillance. Below, we will explore the building 
blocks necessary to move us into the fourth gen-
eration, as well as explore potential challenges 
and considerations the PV community must face 
as we move into the next phase of technology to 
assist in PV-related activities.

https://journals.sagepub.com/home/taw
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Building blocks of the fourth generation 
enabled safety surveillance
We propose a fourth generation of AI-enabled 
data analysis to simplify multi-database analysis 
and ease data availability for custodians. Key ele-
ments may include the following: (1) establishing 
data commons for data registration, (2) utilizing 
AI-enabled data access via agent-based discovery, 
(3) standardizing data through KGs, (4) support-
ing automatic code generation for analyses, and 
(5) managing operational aspects like master ser-
vice agreements to protect personally identifiable 
information, facilitate reanalyses, and ease access 
while respecting data localization laws and col-
laboration requirements. This approach could 
reduce the need to transform native data into 
CDMs, enabling efficient, real-time analysis 
across diverse datasets. To realize this potential, 
we recommend prioritizing research that assesses 
how GenAI can accelerate the effective use of 
electronic health data to enhance patient safety.

The evolution of drug safety surveillance into its 
fourth generation requires a paradigm shift 
toward more dynamic and interconnected data 
ecosystems. Central to this shift is the ability to 
seamlessly integrate and analyze data from diverse 
sources—whether in-house or external. This inte-
gration first relies on the concept of data “discov-
erability,” ensuring that data systems are easily 
findable and comprehensively described by meta-
data that details their contents and relevance to 
specific studies. Notably, although ontologies for 
RWD metadata are important to enable this para-
digm shift, the extent to which these metadata 
exist and are available is insufficient. Processes, 
potentially supported with GenAI tools, may sup-
port the development and make available ontolo-
gies for RWD metadata, as are financial support 
and a standardized approach to ensure metadata 
maintenance and updating. Recent frameworks 
like the DIVERSE framework and the MINERVA 
metadata list offer promising strategies for stand-
ardizing metadata across diverse data sources.56,57 
Such tools are factors that may support interoper-
ability and reduce bias, particularly in distributed 
analytics.

DDNs enhance statistical power by aggregating 
data from multiple sources, enabling robust anal-
yses that can detect rare adverse events and 
improve generalizability across diverse popula-
tions and settings.58

However, integrating varied data sources presents 
challenges, especially for pharmacovigilance (PV). 
Safety analyses often use data not optimized for 
population-level studies, leading to issues in data 
availability and technical barriers due to different 
formats and coding systems, which can introduce 
selection bias.59 The Structured Process to Identify 
Fit-For-Purpose Data (SPIFD) framework 
addresses these challenges by systematically assess-
ing data reliability and relevance to mitigate bias.60

Data commons for data registration. Data commons 
provide shared platforms co-locating data, storage, 
and computing resources with common APIs and 
tools.61 They offer centralized environments (e.g., 
cloud-based tools like Google Colab; https://colab.
research.google.com/) where diverse datasets can 
be managed and analyzed using standardized 
methods. However, in healthcare, privacy concerns 
often prevent the open sharing of sensitive data. 
We envision a data commons model allowing con-
trolled metadata sharing and supporting decentral-
ized analysis, preserving data privacy and 
autonomy.62 Standardizing metadata and provid-
ing secure tools can enhance data integration effi-
ciency and facilitate robust research findings.

However, CDMs, as seen in initiatives like 
Sentinel, effectively protect privacy and maintain 
local data control, important for political and cul-
tural acceptance. The data commons approach 
must ensure comparable data privacy and govern-
ance to be acceptable.

While integrating data commons could benefit the 
fourth-generation approach by facilitating data 
registration and discovery, they are not essential. 
Core objectives—leveraging AI for data access, 
standardizing data via KGs, and automating anal-
yses—could be achieved without centralized data 
commons, provided robust interoperability and 
data governance mechanisms exist.

From centralized to decentralized study data 
management. Initially centralized, the data com-
mons framework has demonstrated significant 
potential in improving data accessibility and util-
ity across various fields. As highlighted by Guha 
et al., this framework enables the pooling of vast 
amounts of public data, making it accessible via 
standardized APIs.63 While centralization has its 
benefits, drug safety is now transitioning toward 
a decentralized model where data can remain in 
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its native environment but still be fully accessible 
and integrated into broader safety surveillance 
systems. Advancements in Cloud APIs and visu-
alization tools have facilitated this shift, enabling 
real-time analysis and reporting of safety signals, 
which could reduce drug-related risks.

Looking ahead, integrating AI—including machine 
learning for predictive analytics and natural lan-
guage processing for mining unstructured data 
(such as social media)—will further enhance the 
effectiveness of drug safety surveillance. This pro-
active approach not only addresses current surveil-
lance needs but also helps predict and mitigate 
risks associated with new pharmaceuticals, ulti-
mately improving patient safety on a global scale.

Architectural framework for a decentralized data 
commons. The proposed architectural framework 
for a decentralized data commons must support 
key capabilities, such as data authentication (veri-
fying the publisher and trustworthiness of the 
data through mechanisms like digital signatures, 
like those used in open-source software), detailed 
metadata descriptions (including information 
about coding scheme versions and the language 
of the source), and alignment with KGs. This 
framework should enable data to be described in 
its native language, and when paired with a large 
language model (LLM), it allows for the interpre-
tation and integration of diverse data sets without 
the need for conventional CDM conversions.

Potential challenges and considerations. Tran-
sitioning to a decentralized data management 
model introduces several challenges. These 
include the risk of data loss if a provider with-
draws their data from the commons, the poten-
tial introduction of low-quality or malicious data 
by bad actors, and the complexities associated 
with ensuring continuous data integrity and secu-
rity. Addressing these challenges requires robust 
mechanisms for data verification, quality con-
trol, and stakeholder cooperation to preserve the 
integrity and usefulness of the data commons.

Standardizing data with KGs in drug safety. The 
integration of GenAI with KGs represents a sig-
nificant advancement in addressing key chal-
lenges in drug safety, including interoperability, 
data integration, and predictive analysis. KGs are 
structured representations that connect entities 
(e.g., drugs, diseases, clinical trials) through 
meaningful relationships, transforming complex, 

multi-dimensional data into actionable insights. 
By organizing data into interconnected networks, 
KGs potentially offer a framework for enhancing 
safety surveillance and enabling predictive, pre-
ventive, and personalized medicine. While the 
current literature on the application of KGs in 
pharmacovigilance remains sparse, with limited 
examples demonstrating their utility, this emerg-
ing area holds promise for advancing the field and 
addressing critical gaps in drug safety.

Integration across diverse datasets. An impor-
tant challenge in drug safety is integrating het-
erogeneous RWD—including clinical, genomic, 
and chemical datasets—while adhering to FAIR 
(Findable, Accessible, Interoperable, and Reus-
able) principles. Currently, many analyses are 
conducted in silos, requiring significant levels 
of domain expertise to develop queries that can 
address specific drug safety questions.

The PheKnowLator project demonstrates the 
potential of KGs to integrate diverse data modali-
ties, such as genomic, proteomic, clinical, and 
chemical information, into a unified and FAIR-
compliant framework.64 By building on examples 
like PheKnowLator, the combination of KGs and 
GenAI could automate the harmonization of 
RWD with other high-dimensional datasets. This 
synergy holds promise for enhancing routine 
pharmacovigilance activities—such as adverse 
event detection and monitoring—by enabling 
faster and more timely access to comprehensive 
and supporting evidence.

Predictive models using KGs. The PlaNet sys-
tem by Brbić et  al. exemplifies the combination 
of AI and KGs to address safety prediction chal-
lenges in clinical trials.65 PlaNet uses two distinct 
KGs—one for clinical data and the other for bio-
logical and chemical relationships—to predict 
safety outcomes and adverse events more effec-
tively. By leveraging predictive modeling, PlaNet 
demonstrates a framework with the potential 
to improve the accuracy of safety assessments, 
potentially offering a scalable solution for iden-
tifying potential risks earlier in the drug develop-
ment process.

Validation and quality assurance. Despite these 
advances, ensuring the reliability of AI-driven 
KG systems remains a critical challenge. Qual-
ity assurance processes, such as benchmarking 
KG models against established safety datasets 
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and validating predictive outputs, are essential to 
building trust in their applications. For example, 
frameworks that compare GenAI predictions to 
validated adverse event databases can help meas-
ure their accuracy, consistency, and reproduc-
ibility. Incorporating such validation mechanisms 
will be crucial as KGs and AI are further inte-
grated into routine safety surveillance systems.

Toward real-time drug safety surveillance. The 
potential for KGs to enable real-time data que-
rying, as demonstrated by LinkedIn’s use of 
KG technologies with sub-millisecond response 
times,66 signals a potential, major shift in pharma-
covigilance. Applying similar capabilities to drug 
safety surveillance could allow regulators and 
researchers to query complex datasets dynami-
cally and efficiently. This is particularly relevant 
for responding to emerging safety signals in real 
time, improving decision-making for clinical and 
regulatory stakeholders.

Automatic code generation for PV
Innovative applications of GenAI. GenAI, par-

ticularly LLMs, shows promise in transforming 
healthcare data analysis. LLMs interpret natural 
language queries and generate coherent responses, 
bridging the gap between human inquiry and 
machine-readable data.67–69 Techniques like 
retrieval-augmented generation (RAG) further 
enhance LLMs’ accuracy for data-validated 
responses.70,71 LLMs can automate complex data 
interactions, including generating SQL queries 
for epidemiological research.72,73

GenAI can transform federated RWD networks by 
enabling dynamic evolution of data structures and 
optimizing queries, reducing the operational bur-
den on data providers. Re-envisioning the extract, 
transform, and load (ETL) process as a business 
context document allows for real-time queries exe-
cuted directly against raw data, bypassing prede-
fined CDM transformations.74 This approach 
could enhance the flexibility of data pipelines.

Such advancements allow researchers to ask com-
plex questions across RWD databases, whether in 
native formats or CDMs. GenAI facilitates com-
parisons of analyses performed on native versus 
CDM-transformed data, improving the scope 
and accuracy of real-world evidence.

For example, assessing a pharmaceutical prod-
uct’s adverse events globally currently requires 

access to diverse data formats. A GenAI-driven 
interface could query these sources worldwide, 
including databases in the United States, EU, 
Japan, China, and more. Assuming data privacy 
and governance issues are resolved, researchers 
could estimate and compare incidence rates 
across formats and regions, enhancing global 
result comparability.

These developments suggest a future where GenAI 
simplifies data handling and broadens analytical 
capabilities. By offering rapid insights into PV and 
patient safety, GenAI could extend tools developed 
for CDM ecosystems across various RWD sources, 
enhancing overall evidence generation.

Enhancing data interoperability with AI and 
KGs. GenAI and KGs offer promising avenues 
for data interoperability without relying solely on 
traditional CDMs. AI-enabled, agent-based data 
discovery can facilitate real-time analysis across 
diverse datasets while preserving privacy.61 KGs 
standardize data by capturing relationships inher-
ent in heterogeneous sources, reducing informa-
tion loss and maintaining integrity.75

Data commons repositories for data registration 
can streamline sharing by providing standardized 
metadata,62 and automatic code generation tools 
can enhance code portability and replicability.76 
Brat et  al. argue that LLMs’ ability to interpret 
diverse data formats may reduce the reliance on 
traditional data models, prompting a reevaluation 
of data interoperability strategies in healthcare.77

Collaboration among data custodians, analysts, 
regulators, and developers is essential to create 
governance frameworks that balance accessibility 
with privacy and ethical considerations, moving 
toward more efficient use of RWD and improving 
patient outcomes.

Emerging techniques like federated learning and 
secure multiparty computation provide frame-
works for privacy-preserving data analysis, help-
ing ensure sensitive data remains secure while 
enabling collaborative research.

Challenges and future directions
Current challenges in CDM implementation. The 
growing size and diversity of data networks inten-
sify the challenges of converting data to a stan-
dard CDM, compounded by the constantly 
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changing healthcare landscape.24 Integrating het-
erogeneous data sources complicates the creation 
of universally applicable CDMs essential for drug 
safety surveillance.25 Ensuring semantic consis-
tency is crucial to avoid misinterpretations in 
drug safety analysis.

Kent et al. highlight the difficulties in standard-
izing data across healthcare systems, where vari-
ability in data collection methods can compromise 
analysis reliability.26 Overcoming technological, 
methodological, regulatory, and ethical chal-
lenges adds complexity to CDM implementation. 
Analysts also struggle with accessing data through 
various vendor tools and employing different 
strategies, which complicates analyses and pro-
longs insight generation.27 In addition, evolving 
CDMs and their ecosystems can lead to discrep-
ancies in outputs, further complicating compari-
sons across different models.28,29

Future directions. Addressing these challenges 
requires innovative approaches that leverage 
emerging technologies.

Enhancing ontological consistency with AI and KGs 
in biomedical data. Addressing the complexities 
of DDNs requires careful consideration of the 
terminologies and ontologies that underpin the 
description and categorization of data within 
these systems. Traditional management of medi-
cal terminologies often involves cross-walk maps 
created by CDMs, but these solutions have inher-
ent limitations, particularly in areas like drug 
safety, where data must be meticulously accurate, 
current, and contextually meaningful.

Li et al. introduced FHIR-generative pre-trained 
transformer (GPT), an innovative approach that 
combines LLMs with the Fast Healthcare 
Interoperability Resources (FHIR) standard to 
enhance health data interoper ability.78 By lever-
aging LLMs’ natural language understanding 
capabilities, FHIR-GPT can effectively bridge dif-
ferent data formats and terminologies, enabling 
more seamless data exchange and integration 
across healthcare systems.79

The integration of GenAI and KGs presents new 
opportunities to overcome these limitations. 
These technologies offer more dynamic and con-
textually aware methods for managing the evolu-
tion of medical terminologies, ultimately 

improving the consistency and utility of biomedi-
cal data across different systems.

The role of generative AI in enhancing ontological 
consistency. GenAI has the potential to funda-
mentally improve the management of biomedical 
terminologies by dynamically harmonizing mis-
matched terminologies across DDNs. This tech-
nology can leverage its ability to analyze vast 
amounts of structured and unstructured data to 
identify and resolve inconsistencies in real time.

The reason GenAI holds such promise in this 
domain is its capacity to generate contextually 
appropriate mappings that go beyond the rigid 
structures of traditional crosswalks. Using AI to 
understand the underlying semantics and rela-
tionships between different medical codes, it can 
provide more accurate and flexible mappings 
between systems like MedDRA and ICD. This 
could streamline the integration of data from dis-
parate sources, allowing for faster, more accurate 
data analysis without the risk of misclassification 
or oversimplification.

In the observational research landscape, where 
the quality and reliability of RWD are paramount, 
GenAI can help standardize the ontological 
frameworks that underpin these data. This stand-
ardization can improve the interoperability of 
healthcare data systems, ensuring that patient 
outcomes, safety signals, and treatment efficacy 
data are consistently represented across multiple 
platforms and coding standards. Ultimately, this 
reduces the potential for errors in drug safety sur-
veillance and accelerates the ability to respond to 
new medical challenges.

GenAI helps to create a dynamic ecosystem where 
medical terminologies can evolve in sync with the 
rapid pace of biomedical research, ensuring that 
healthcare systems are better equipped to handle 
future pandemics, emerging diseases, and evolv-
ing medical knowledge.

Generative AI and the future of observational 
research. The advent of GenAI holds significant 
potential to revolutionize observational research 
by enhancing the ETL process and enabling more 
dynamic data analyses. This technology facilitates 
direct querying of diverse RWD databases, sig-
nificantly streamlining the research process by 
reducing the need for extensive data preparation, 
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which is crucial for applications like effective sig-
nal detection.80

GenAI, particularly the use of LLMs, is rapidly 
advancing in automating and supporting complex 
computer coding tasks. Recent studies have dem-
onstrated that LLMs when trained with user 
guides can effectively provide textual responses 
for coding rules necessary for data entry into 
databases.74,81 This suggests a future where LLMs 
could be trained on specific database structures 
or data model architectures, enabling them to 
convert and adapt code in real time for any tar-
geted database system.

These capabilities would dramatically increase 
the efficiency of database analyses, allowing for 
optimal coding that minimizes information loss 
during data conversion processes. This advance-
ment could eliminate the labor-intensive and 
repetitive tasks associated with data conversion 
and updates in CDMs or native database struc-
tures. Furthermore, this approach would facili-
tate the effective reuse of code across different 
DDNs, making it easier to apply proven analytical 
tools across various data systems without signifi-
cant reconfiguration.

GenAI tools have the potential to support other 
aspects necessary for the implementation of obser-
vational studies. For example, GenAI can assist 
with defining, evaluating, and monitoring the con-
sistency of phenotypes over time, as well as sum-
marize information from unstructured 
observational data for phenotype validation. In 
addition, the interpretation of study diagnostics to 
inform study design choices and ultimately choose 
a design based on a framework that enables causal 
inference82 may be supported with GenAI.

Integrating GenAI into observational research 
will necessitate rigorous quality assurance pro-
cesses to ensure data integrity and reliability. 
Leveraging existing frameworks, such as those 
developed by the OHDSI for quality-assuring 
CDMs, could provide a foundation for develop-
ing AI-specific quality assurance standards. In 
addition, applying comprehensive quality man-
agement systems that are crucial in PV will be 
essential to build trust and verify the accuracy of 
AI-generated insights in real-world applications.

By addressing these challenges and ensuring robust 
validation protocols, GenAI can significantly lower 

the barriers to efficient and effective observational 
research, paving the way for more timely insights 
into patient outcomes and drug safety.

Conclusion
While CDMs have a current role in record link-
age and certain analytical use cases, the advent of 
AI-driven methods promises a transformative 
shift in distributed analytics, potentially rendering 
traditional models less central.

The expansion of electronic healthcare databases 
and DDNs offers unprecedented opportunities 
for health data analysis. These tools can signifi-
cantly improve the identification of drug-related 
risks and benefits, empowering healthcare profes-
sionals to make informed decisions that enhance 
patient safety. As these systems evolve, they will 
shape the future of healthcare by leveraging 
insights from routine clinical data.

Integrating advanced technologies like GenAI 
and KGs could transform the management and 
analysis of RWD. Although CDMs are unlikely to 
be replaced immediately, these technologies indi-
cate a future where CDMs may become less cen-
tral. KGs can facilitate the analysis of diverse 
RWD datasets in their native formats, addressing 
challenges associated with data standardization, 
privacy, and multi-database analyses.

Tackling ontological challenges from various cod-
ing systems is crucial. KGs, supported by GenAI 
and human-in-the-loop validation, could enable 
multimodal analyses of RWD alongside other 
data sources like clinical trials and adverse event 
reports. This harmonization can lead to more 
comprehensive and accurate analyses.

GenAI has the potential to revolutionize interac-
tions between data providers and researchers by 
dynamically managing data structures in feder-
ated and decentralized networks. This reduces 
operational burdens, while KGs provide a robust 
framework for integrating diverse biomedical 
data, allowing for deeper insights into drug safety 
surveillance and personalized medicine.83,84

As we adopt these emerging technologies, it is cru-
cial to do so responsibly.85 Fostering collaboration 
among data scientists, clinicians, and regulatory 
bodies, along with ethical AI use, will help maxi-
mize the benefits of big data for patient outcomes 
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and public health. Advanced sandboxing tech-
niques and non-PHI summaries enable analysis 
without direct patient-level data access, enhancing 
privacy protections within this new framework.

Despite the long-standing use of CDMs, ongoing 
discussions in the literature emphasize that no 
single model offers a perfect solution. A key ques-
tion is not just how many data sources have been 
converted into a CDM, but how many remain 
unavailable and why. Evaluating the value of 
CDMs and exploring alternative approaches 
remain central to the discourse, as demonstrated 
by recent work like that of Tsai et al.86

Complexities in accessing multiple data sources—
such as the need to use different vendor interfaces 
for datasets with unique structures—highlight the 
limitations of current approaches.27 These chal-
lenges could be mitigated if AI-driven solutions 
allow analysts to focus directly on the data itself, 
without being constrained by specific data models 
or interfaces. By enabling a data model-agnostic 
focus, AI has the potential to simplify and enhance 
the analytical process across diverse data 
environments.

In conclusion, the convergence of GenAI and 
KGs represents a promising frontier in the evolu-
tion of drug safety surveillance. By embracing 
these technologies responsibly and collaboratively, 
we can address current limitations, unlock deeper 
insights from complex datasets, and ultimately 
improve patient outcomes and public health.

Declarations

Ethics approval and consent to participate
Not applicable, as this is a review solely based on 
previously published research.

Consent for publication
Not applicable, as this is a review solely based on 
previously published research.

Author contributions
Jeffery L. Painter: Conceptualization; Writing 
– original draft; Writing – review & editing.

Darmendra Ramcharran: Conceptualization; 
Writing – review & editing.

Andrew Bate: Conceptualization; Supervision; 
Writing – review & editing.

Acknowledgements
None.

Funding
The authors disclosed receipt of the following 
financial support for the research, authorship, 
and/or publication of this article: GSK covered all 
costs associated with the conduct of the study, the 
development of the manuscript, and the decision 
to publish the manuscript. JP, DR, and AB are 
employed by GSK and hold financial equities.

Competing interests
The authors declare that there is no conflict of 
interest.

Availability of data and materials
There are no datasets associated with this 
perspective.

ORCID iD
Jeffery L. Painter  https://orcid.org/0000-0001- 
9651-9904

References
 1. Montastruc J-L, Benevent J, Montastruc F, et al. 

What is pharmacoepidemiology? Definition, 
methods, interest and clinical applications. 
Therapies 2019; 74(2): 169–174.

 2. Jones JK, Van de Carr SW, Rosa F, et al. 
Medicaid drug-event data: an emerging tool for 
evaluation of drug risk. Acta Med Scand 1984; 
215(S683): 127–134.

 3. Schneeweiss S and Avorn J. A review of uses of 
health care utilization databases for epidemiologic 
research on therapeutics. J Clin Epidemiol 2005; 
58(4): 323–337.

 4. Evans RS. Electronic health records: then, now, 
and in the future. Yearb Med Inf 2016; 25(S01): 
S48–S61.

 5. Klungel OH, Kurz X, De Groot MCH, et al. 
Multi-centre, multi-database studies with 
common protocols: lessons learnt from the IMI 
PROTECT project. Pharmacoepidemiol Drug Saf 
2016; 25: 156–165.

 6. Blettner M, Sauerbrei W, Schlehofer B, et al. 
Traditional reviews, meta-analyses and pooled 
analyses in epidemiology. Int J Epidemiol 1999; 
28(1): 1–9.

 7. Stroup DF, Berlin JA, Morton SC, et al. Meta-
analysis of observational studies in epidemiology: 

https://journals.sagepub.com/home/taw
https://orcid.org/0000-0001-9651-9904
https://orcid.org/0000-0001-9651-9904


14 journals.sagepub.com/home/taw

Volume 16
TherapeuTic advances in 
drug safety

a proposal for reporting. JAMA 2000; 283(15): 
2008–2012.

 8. Platt R, Carnahan RM, Brown JS, et al. The US 
Food and Drug Administration’s Mini-Sentinel 
program: status and direction. Pharmacoepidemiol 
Drug Saf 2012; 21: 1–8.

 9. Riera-Guardia N, Saltus CW, Bui CL, et al. 
Changes in the landscape of health care database 
research from 2000 to 2011. Research Triangle 
Park, NC: RTI Press. https://doi.org/10.3768/
rtipress.2013.RR.0019.1308

 10. Chen RT, DeStefano F, Davis RL, et al. The 
Vaccine Safety Datalink: immunization research 
in health maintenance organizations in the USA. 
Bull World Health Organ 2000; 78(2): 186–194. 
https://www.scielosp.org/pdf/bwho/v78n2/
v78n2a06.pdf.

 11. Chen RT, Glasser JW, Rhodes PH, et al. Vaccine 
Safety Datalink project: a new tool for improving 
vaccine safety monitoring in the United States. 
Pediatrics 1997; 99(6): 765–773.

 12. Huang C, Jalbert J, Kimura M, et al. The Asian 
Pharmacoepidemiology Network (AsPEN): 
promoting multi-national collaboration for 
pharmacoepidemiologic research in Asia. 
Pharmacoepidemiol Drug Saf 2013; 22: 700–704.

 13. Platt RW, Dormuth CR, Chateau D, et al. 
Observational studies of drug safety in multi-
database studies: methodological challenges and 
opportunities. eGEMs 2016; 4(1): 1221.

 14. Suissa S, Henry D, Caetano P, et al. CNODES: 
the Canadian network for observational drug 
effect studies. Open Med 2012; 6(4): e134.

 15. Alter GC and Vardigan M. Addressing global 
data sharing challenges. J Empirical Res Hum Res 
Ethics 2015; 10(3): 317–323.

 16. Arlett PR and Kurz X. New approaches to 
strengthen pharmacovigilance. Drug Discov Today 
Technol 2011; 8(1): e15-e19.

 17. Schneeweiss S, Brown JS, Bate A, et al. Choosing 
among common data models for real-world 
data analyses fit for making decisions about the 
effectiveness of medical products. Clin Pharmacol 
Ther 2020; 107(4): 827–833.

 18. Yamaguchi M, Inomata S, Harada S, et al. 
Establishment of the MID-NET medical 
information database network as a reliable and 
valuable database for drug safety assessments in 
Japan. Pharmacoepidemiol Drug Saf 2019; 28(10): 
1395–1404.

 19. Palchuk MB, London JW, Perez-Rey D, et al. 
A global federated real-world data and analytics 

platform for research. JAMIA Open 2023; 6(2): 
ooad035.

 20. Reisinger SJ, Ryan PB, O’Hara DJ, et al. 
Development and evaluation of a common data 
model enabling active drug safety surveillance 
using disparate healthcare databases. J Am Med 
Inform Assoc 2010; 17(6): 652–662.

 21. Toh S, Pratt N, Klungel O, et al. Distributed 
networks of databases analyzed using common 
protocols and/or common data models.  
In: Strom BL, Kimmel SE and Hennessy S 
(eds) Pharmacoepidemiology. Wiley-Blackwell, 
Chichester, 2019, pp. 617–638. 

 22. Danese MD, Halperin M, Duryea J, et al. The 
generalized data model for clinical research. BMC 
Med Inform Decis Mak 2019; 19: 1–3.

 23. Roblin DW, Rubenstein KB, Tavel HM, et al. 
Development of a common data model for a 
multisite and multiyear study of virtual visit 
implementation: a case study. Med Care 2023; 
61: S54–S61.

 24. Bourke A, Bate A, Sauer BC, et al. Evidence 
generation from healthcare databases: 
recommendations for managing change. 
Pharmacoepidemiol Drug Saf 2016; 25(7): 749–754.

 25. Koutkias V. From data silos to standardized, 
linked, and FAIR data for pharmacovigilance: 
current advances and challenges with 
observational healthcare data. Drug Saf 2019; 
42(5): 583–586.

 26. Kent S, Burn E, Dawoud D, et al. Common 
problems, common data model solutions: evidence 
generation for health technology assessment. 
Pharmacoeconomics 2021; 39(3): 275–285.

 27. Zhou X, Geier J, Shen R, et al. Big data and real 
world evidence: rapid cycle analysis capability 
via emerging analytic tools—insights in atopic 
dermatitis and lessons for wider adoption. 
Pharmacoepidemiol Drug Saf 2019; 28: 68–69.

 28. Xu Y, Zhou X, Suehs BT, et al. A comparative 
assessment of observational medical outcomes 
partnership and mini-sentinel common data 
models and analytics: implications for active drug 
safety surveillance. Drug Saf 2015; 38: 749–765.

 29. Wang SV, Sreedhara SK and Schneeweiss S. 
Reproducibility of real-world evidence studies 
using clinical practice data to inform regulatory 
and coverage decisions. Nat Commun 2022; 
13(1): 5126.

 30. Cai CX, Halfpenny W, Boland MV, et al. 
Advancing toward a common data model in 
ophthalmology: gap analysis of general eye 

https://journals.sagepub.com/home/taw
https://doi.org/10.3768/rtipress.2013.RR.0019.1308
https://doi.org/10.3768/rtipress.2013.RR.0019.1308
https://www.scielosp.org/pdf/bwho/v78n2/v78n2a06.pdf
https://www.scielosp.org/pdf/bwho/v78n2/v78n2a06.pdf


J Painter, D Ramcharran et al.

journals.sagepub.com/home/taw 15

examination concepts to standard Observational 
Medical Outcomes Partnership (OMOP) 
concepts. Ophthalmol Sci 2023; 3(4): 100391.

 31. Haberson A, Rinner C, Schöberl A, et al. 
Feasibility of mapping Austrian health claims 
data to the OMOP common data model. J Med 
Syst 2019; 43: 1–5.

 32. Kim H, Choi J, Jang I, et al. Feasibility of 
representing data from published nursing 
research using the OMOP common data model. 
AMIA Annu Symp Proc 2016; 2016: 715.

 33. Maier C, Lang L, Storf H, et al. Towards 
implementation of OMOP in a German 
university hospital consortium. Appl Clin Inform 
2018; 9(1): 54–61.

 34. Zhou X, Murugesan S, Bhullar H, et al. An 
evaluation of the THIN database in the OMOP 
Common Data Model for active drug safety 
surveillance. Drug Saf 2013; 36: 119–134.

 35. Garza M, Del Fiol G, Tenenbaum J, et al. 
Evaluating common data models for use with a 
longitudinal community registry. J Biomed Inf 
2016; 64: 333–341.

 36. Gressler LE, Marinac-Dabic D, Resnic FS, et al. 
A comprehensive framework for evaluating the 
value created by real-world evidence for diverse 
stakeholders: the case for coordinated registry 
networks. Therap Innov Regul Sci 2024; 58: 
1042–1052.

 37. O’Malley KJ, Cook KF, Price MD, et al. 
Measuring diagnoses: ICD code accuracy. Health 
Serv Res 2005; 40(5 Pt 2): 1620–1629.

 38. Painter JL. Toward automating an inference 
model on unstructured terminologies: OXMIS 
case study. Adv Exp Med Biol 2010; 680: 
645–651.

 39. Sawarkar A, Sorbello A, Ripple AML, et al. 
Detecting adverse drug event safety signals from 
MEDLINE reports: challenges in employing 
cross-terminology mapping of MeSH to 
MedDRA, https://data.lhncbc.nlm.nih.gov/public/
mor/pubs/pdf/2017-amia-as-poster.pdf (2017, 
accessed 2 September 2024).

 40. Nadkarni PM and Darer JA. Migrating existing 
clinical content from ICD-9 to SNOMED. J Am 
Med Inform Assoc 2010; 17(5): 602–607.

 41. Brown EG, Wood L and Wood S. The medical 
dictionary for regulatory activities (MedDRA). 
Drug Saf 1999; 20(2): 109–117.

 42. Zhang X, Feng Y, Li F, et al. Evaluating 
MedDRA-to-ICD terminology mappings. BMC 
Med Inform Decis Mak 2024; 23(Suppl. 4): 299.

 43. Khan NF, Harrison SE and Rose PW. Validity 
of diagnostic coding within the General Practice 
Research Database: a systematic review. Br J Gen 
Pract 2010; 60(572): e128–e136.

 44. Wang Y, Wang L, Rastegar-Mojarad M, et al. 
Clinical information extraction applications: a 
literature review. J Biomed Inform 2018; 77: 34–49.

 45. Livne OE, Schultz ND and Narus SP. Federated 
querying architecture with clinical & translational 
health IT application. J Med Syst 2011; 35(5): 
1211–1224.

 46. Lu Z. Information technology in 
pharmacovigilance: Benefits, challenges, and 
future directions from industry perspectives. Drug 
Healthc Patient Saf 2009; 1: 35–45.

 47. Hall GC, Sauer B, Bourke A, et al. 
Guidelines for good database selection and 
use in pharmacoepidemiology research. 
Pharmacoepidemiol Drug Saf 2012; 21(1): 1–10.

 48. Cohen JM, Cesta CE, Kjerpeseth L, et al.  
A common data model for harmonization  
in the Nordic Pregnancy Drug Safety Studies 
(NorPreSS). Norsk Epidemiologi 2021;  
29(1–2). https://doi.org/10.5324/nje.v29i1-2.4053

 49. Bate A. Guidance to reinforce the credibility of 
health care database studies and ensure their 
appropriate impact. Pharmacoepidemiol Drug Saf 
2017; 26(9): 1013–1017.

 50. McIntosh LD, Juehne A, Vitale CRH, et al. 
Repeat: a framework to assess empirical 
reproducibility in biomedical research. BMC Med 
Res Methodol 2017; 17: 1–9.

 51. Regulation P. Regulation (EU) 2016/679 of the 
European Parliament and of the Council. Off J 
Eur Union 2016; 679: 2016.

 52. O’Herrin JK, Fost N and Kudsk KA. Health 
Insurance Portability Accountability Act 
(HIPAA) regulations: effect on medical record 
research. Ann Surg 2004; 239(6): 772–778.

 53. Curtis LH, Weiner MG, Boudreau DM, et al. 
Design considerations, architecture, and use 
of the Mini-Sentinel distributed data system. 
Pharmacoepidemiol Drug Saf 2012; 21: 23–31.

 54. Kalkman S, Mostert M, Gerlinger C, et al. 
Responsible data sharing in international health 
research: a systematic review of principles and 
norms. BMC Med Ethics 2019; 20: 1–13.

 55. Walker AM, Zhou X, Ananthakrishnan AN, 
et al. Computer-assisted expert case definition in 
electronic health records. Int J Med Inform 2016; 
86: 62–70.

https://journals.sagepub.com/home/taw
https://data.lhncbc.nlm.nih.gov/public/mor/pubs/pdf/2017-amia-as-poster.pdf
https://data.lhncbc.nlm.nih.gov/public/mor/pubs/pdf/2017-amia-as-poster.pdf
https://doi.org/10.5324/nje.v29i1-2.4053


16 journals.sagepub.com/home/taw

Volume 16
TherapeuTic advances in 
drug safety

 56. Gini R, Pajouheshnia R, Gardarsdottir H, et al. 
Describing diversity of real world data sources in 
pharmacoepidemiologic studies: the DIVERSE 
scoping review. Pharmacoepidemiol Drug Saf 2024; 
33(5): e5787.

 57. Pajouheshnia R, Gini R, Gutierrez L, et al. 
Metadata for Data dIscoverability aNd 
Study rEplicability in obseRVAtional Studies 
(MINERVA): development and pilot of 
a metadata list and catalogue in Europe. 
Pharmacoepidemiol Drug Saf 2024; 33(8): e5871.

 58. Lavertu A, Vora B, Giacomini KM, et al. A new 
era in pharmacovigilance: toward real-world data 
and digital monitoring. Clin Pharmacol Ther 2021; 
109(5): 1197–1202.

 59. Bate A, Chuang-Stein C, Roddam A, et al. 
Lessons from meta-analyses of randomized 
clinical trials for analysis of distributed networks 
of observational databases. Pharm Stat 2019 ; 
18(1): 65–77.

 60. Gatto NM, Campbell UB, Rubinstein E, et al. 
The structured process to identify fit-for-purpose 
data: a data feasibility assessment framework. Clin 
Pharmacol Therap 2022; 111(1): 122–134.

 61. Grossman RL, Heath A, Murphy M, et al. A 
case for data commons: toward data science as a 
service. Comput Sci Eng 2016; 18(5): 10–20.

 62. Eschenfelder KR and Johnson A. Managing the 
data commons: controlled sharing of scholarly data. 
J Assoc Inf Sci Technol 2014; 65(9): 1757–1774.

 63. Guha RV, Radhakrishnan P, Xu B, et al. Data 
commons. arXiv Preprint arXiv:2309.13054, 
2023.

 64. Callahan TJ, Tripodi IJ, Stefanski AL, et al. An 
open source knowledge graph ecosystem for the 
life sciences. Sci Data 2024; 11(1): 363.

 65. Brbić M, Yasunaga M, Agarwal P, et al. 
Predicting drug outcome of population via 
clinical knowledge graph. medRxiv. 2024.

 66. Li J, Wade V and Sah M. Developing knowledge 
models of social media: a case study on LinkedIn. 
Open J Semant Web 2014; 1(2): 1–24.

 67. Brown TB. Language models are few-shot 
learners. arXiv Preprint arXiv:2005.14165, 
2020, https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac1
42f64a-Paper.pdf (2020, accessed 2 September 
2024).

 68. Xie SM, Raghunathan A, Liang P, et al. 
An explanation of in-context learning as 
implicit Bayesian inference. arXiv Preprint 
arXiv:2111.02080, 2021.

 69. Radford A, Wu J, Child R, et al. Language 
models are unsupervised multitask learners. 
OpenAI Blog, https://insightcivic.s3.us-east-1.
amazonaws.com/language-models.pdf (2019, 
accessed 2 September 2024).

 70. Lewis P, Perez E, Piktus A, et al. Retrieval-
augmented generation for knowledge-intensive 
NLP tasks. In: 34th conference on neural 
information processing systems (NeurIPS 2020), 
Vancouver, BC, Canada, 2020.

 71. Topsakal O and Akinci TC. Creating large 
language model applications utilizing LangChain: 
a primer on developing LLM apps fast. Int Conf 
Appl Eng Nat Sci 2023; 1: 1050–1056.

 72. Zhao P, Zhang H, Yu Q, et al. Retrieval-
augmented generation for AI-generated content: 
a survey. arXiv Preprint arXiv:2402.19473, 2024.

 73. Ziletti A and D’Ambrosi L. Retrieval augmented 
text-to-SQL generation for epidemiological 
question answering using electronic health 
records. arXiv Preprint arXiv:2403.09226, 2024.

 74. Painter JL, Chalamalasetti VR, Kassekert R, 
et al. Automating pharmacovigilance evidence 
generation: using large language models to 
produce context-aware structured query 
language. JAMIA Open 2025; 8(1): ooaf003.

 75. Hogan A, Blomqvist E, Cochez M, et al. 
Knowledge graphs. ACM Comput Surv 2021; 
54(4): 1–37.

 76. Lai Y, Li C, Wang Y, et al. DS-1000: a natural and 
reliable benchmark for data science code generation. 
In: International conference on machine learning, 
PMLR, Honolulu, Hawaii, 2023, pp. 18319–18345.

 77. Brat GA, Mandel JC and McDermott MB. 
Do We need data standards in the era of 
large language models? NEJM AI 2024; 1(8): 
AIe2400548.

 78. Li Y, Wang H, Yerebakan HZ, et al. FHIR-
GPT enhances health interoperability with 
large language models. NEJM AI 2024; 1: 
AIcs2300301.

 79. Namli T, Sınacı AA, Gönül S, et al. A scalable 
and transparent data pipeline for AI-enabled 
health data ecosystems. Front Med 2024; 11: 
1393123.

 80. Bate A, Hornbuckle K, Juhaeri J, et al. 
Hypothesis-free signal detection in 
healthcare databases: finding its value for 
pharmacovigilance. Ther Adv Drug Saf 2019; 10: 
2042098619864744.

 81. Painter JL, Mahaux O, Vanini M, et al. 
Enhancing drug safety documentation search 

https://journals.sagepub.com/home/taw
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf


J Painter, D Ramcharran et al.

journals.sagepub.com/home/taw 17

capabilities with large language models: a user-
centric approach. In: 2023 international conference 
on Computational Science and Computational 
Intelligence (CSCI), Las Vegas, NV, USA, 2023.

 82. Hernán MA, Hsu J and Healy B. A second 
chance to get causal inference right: a 
classification of data science tasks. CHANCE 
2019; 32(1): 42–49.

 83. Abu-Salih B, Al-Qurishi M, Alweshah M, et al. 
Healthcare knowledge graph construction: a 
systematic review of the state-of-the-art, open issues, 
and opportunities. J Big Data. 2023; 10(1): 81.

 84. Bean DM, Wu H, Iqbal E, et al. Knowledge 
graph prediction of unknown adverse drug 
reactions and validation in electronic health 
records. Sci Rep 2017; 7(1): 16416.

 85. Stegmann J-U, Littlebury R, Trengove M, et al. 
Trustworthy AI for safe medicines. Nat Rev Drug 
Discov 2023; 22(10): 855–856.

 86. Tsai DHT, Bell JS, Abtahi S, et al. Cross-
regional data initiative for the assessment and 
development of treatment for neurological 
and mental disorders. Clin Epidemiol 2023; 15: 
1241–1252.

Visit Sage journals online 
journals.sagepub.com/
home/taw

 Sage journals

https://journals.sagepub.com/home/taw
https://journals.sagepub.com/home/taw
https://journals.sagepub.com/home/taw

