
Research and Applications

Automating pharmacovigilance evidence generation: using
large language models to produce context-aware
structured query language
Jeffery L. Painter , MS, JD1,�, Venkateswara Rao Chalamalasetti , MCA1,2,
Raymond Kassekert, MBA3, Andrew Bate , PhD4,5

1GlaxoSmithKline, Durham, NC 27701, United States, 2Tech Mahindra, Plano, TX 75024, United States, 3GlaxoSmithKline, Philadelphia, PA
19104, United States, 4GlaxoSmithKline, London WC1A 1DG, United Kingdom, 5London School of Hygiene and Tropical Medicine, London
WC1E 7HT, United Kingdom
�Corresponding author: Jeffery L. Painter, MS, JD, GlaxoSmithKline, Durham, NC 27701, United States (jeffery.l.painter@gsk.com)

Abstract
Objective: To enhance the accuracy of information retrieval from pharmacovigilance (PV) databases by employing Large Language Models
(LLMs) to convert natural language queries (NLQs) into Structured Query Language (SQL) queries, leveraging a business context document.
Materials and Methods: We utilized OpenAI’s GPT-4 model within a retrieval-augmented generation (RAG) framework, enriched with a busi-
ness context document, to transform NLQs into executable SQL queries. Each NLQ was presented to the LLM randomly and independently to
prevent memorization. The study was conducted in 3 phases, varying query complexity, and assessing the LLM’s performance both with and
without the business context document.
Results: Our approach significantly improved NLQ-to-SQL accuracy, increasing from 8.3% with the database schema alone to 78.3% with the
business context document. This enhancement was consistent across low, medium, and high complexity queries, indicating the critical role of
contextual knowledge in query generation.
Discussion: The integration of a business context document markedly improved the LLM’s ability to generate accurate SQL queries (ie, both
executable and returning semantically appropriate results). Performance achieved a maximum of 85% when high complexity queries are
excluded, suggesting promise for routine deployment.
Conclusion: This study presents a novel approach to employing LLMs for safety data retrieval and analysis, demonstrating significant advance-
ments in query generation accuracy. The methodology offers a framework applicable to various data-intensive domains, enhancing the accessi-
bility of information retrieval for non-technical users.

Lay Summary
Our research explores how large language models (LLMs), such as GPT-4, can assist in generating precise Structured Query Language (SQL)
queries to retrieve data from complex pharmacovigilance databases used in drug safety monitoring. These databases have intricate structures
and vast amounts of data, making data retrieval challenging for non-experts and potentially impacting patient safety. We introduced a novel
approach that enhances LLMs by integrating a “business context document”—a guide containing essential database information and rules.
This addition improved the LLM’s success rate in generating correct SQL queries from 8.3% to 78.3%, and up to 85.4% when excluding high-
complexity queries. Our findings suggest that supplementing technical data dictionaries with detailed contextual information enables more
accurate, context-aware responses. This approach could make data retrieval more intuitive and accessible for healthcare professionals and
researchers without deep technical knowledge, facilitating faster, informed decision-making in drug safety. While promising, further validation
across different databases is needed to confirm broader applicability. This study highlights the importance of integrating domain-specific context
to bridge the gap between natural language questions and complex data systems.
Key words: pharmacovigilance; drug safety; information retrieval; large language models (LLMs); natural language processing (NLP).

Introduction
Drug safety, or pharmacovigilance (PV), involves the system-
atic assessment of medications and vaccines to ensure that
benefits outweigh risks. Central to PV are extensive databases
compiling individual case safety reports (ICSRs), which are
crucial for risk identification, strategy development, and reg-
ulatory reporting.1

Navigating safety databases to generate precise queries is
inherently complex, requiring specialized expertise due to their

vast, multi-table, and interlinked structures. Unlike many
other relational databases, safety databases must manage
diverse case types, regulatory requirements, and variations in
product and event reports, all while ensuring compliance with
stringent reporting standards. As noted by Brass and Gold-
berg, this complexity often arises from the mismatch between
ontologies and relational databases,2 leaving users struggling
to articulate accurate search criteria. The prevalence of query
misapplication in healthcare further underscores the need for

Received: September 24, 2024; Revised: December 31, 2024; Editorial Decision: January 13, 2025; Accepted: January 17, 2025
© The Author(s) 2025. Published by Oxford University Press on behalf of the American Medical Informatics Association. This is an Open Access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the original work is properly cited.

JAMIA Open, 2025, 8(1), ooaf003
https://doi.org/10.1093/jamiaopen/ooaf003
Research and Applications

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/article/8/1/ooaf003/8005804 by guest on 21 April 2025

https://orcid.org/0000-0001-9651-9904
https://orcid.org/0009-0005-0197-7299
https://orcid.org/0000-0003-3151-3653

enhanced methods.3 Recent studies demonstrate the effective-
ness of combining heuristic reasoning with deep learning for
predicting semantic group assignments, achieving high accu-
racy and potentially supplementing automated query genera-
tion tasks.4 For example, the CHESS framework introduces a
multi-component pipeline leveraging large language model
(LLM)-based methods for entity and context retrieval, schema
selection, and structured query language (SQL) generation,
improving data retrieval in complex real-world databases.5

Our research presents a novel approach to converting natu-
ral language queries (NLQs) into SQL code for retrieving
information from large, complex safety datasets. Safety data-
bases present unique challenges, storing highly diverse data—
ranging from case reports to product details, adverse events,
and regulatory submissions—while complying with stringent
reporting requirements across regions. Our company’s safety
database contains over 500 tables, with more than 50 col-
umns per table, spanning 50 years of data and encompassing
at least 5000 distinct fields. The largest table holds nearly 1.3
billion rows, and a single safety case may include as many as
100 products and 100 events, adding to the complexity of
tracking and querying. To address these challenges, we devel-
oped a business context document that distills intricate busi-
ness rules and database knowledge from PV experts into
accessible, plain language. Integrating this context document
with the LLM enhances the model’s ability to craft queries
that closely align with business needs, overcoming the limita-
tions of relying solely on database metadata.

While research on NLQ-to-SQL tasks is ongoing, our
approach significantly differs from frameworks like CHESS
by introducing the business context document. This docu-
ment enhances accuracy by providing the LLM with domain-
specific knowledge, aligning query generation with business
rules and database structures. Contextual knowledge is cru-
cial for improving domain-specific NLQ tasks, with applic-
ability beyond PV. Our work addresses the challenge of
navigating an extremely large, complex database, a level of
complexity not explicitly tackled by the CHESS framework.

Crafting queries in PV datasets requires both technical and
scientific expertise, and translating safety scientists’ nuanced
requests into precise code poses a significant challenge with
considerable room for error.6 While tools like Query-by-
Example (QBE) offer simplified means of crafting database
queries,7 they fall short in handling complex needs.8

The rise of LLMs in natural language processing has
improved data management by enabling more efficient and
accurate query generation.9–11 However, LLMs alone often
provide only reasonable, but not perfect, performance in
domain-specific tasks.12 In heavily regulated environments
like PV, accuracy is paramount, requiring approaches that
integrate the expertise of domain specialists.

Recent evaluations highlight performance gaps between
proprietary models like GPT-4 and open-source alterna-
tives.10,13,14 While general query generation tasks have
achieved up to 72% accuracy through advanced retrieval and
schema selection techniques,5 LLM-generated SQL queries
can suffer from issues like “hallucinations” and other
errors.15 This underscores the need for supplementing LLMs
with detailed contextual information to improve query preci-
sion in PV and other highly regulated domains.

Relying on technical teams for safety query formulation
can introduce delays, underscoring the need for solutions that

empower safety scientists with direct access to data through
LLM-driven tools. Our approach builds on advancements in
LLM technology, offering an intuitive interface that allows
non-technical users to perform complex data queries, poten-
tially enhancing PV data analysis and reporting.12 By inte-
grating LLMs with a business context document, we aim to
narrow the gap between technical complexity and domain
expertise, enhancing access to critical drug safety informatics
and supporting informed decision-making.

Methods
Our study aimed to transform NLQs into OracleTM SQL
queries that are both executable code and semantically
appropriate, utilizing LLMs within a retrieval-augmented
generation (RAG) framework enhanced by a detailed busi-
ness context document. For the purposes of this study,
“executable code” refers to SQL queries that are free of struc-
tural errors and can be executed without modification, while
“semantically appropriate” denotes queries that accurately
fulfill the user’s intent by retrieving the correct data in
response to the NLQ. The experiment was conducted in 3
phases to assess the LLM’s capability in SQL query genera-
tion under varying levels of contextual knowledge. The
results of all NLQ-to-SQL generation was compared to a
gold standard query generated by a subject matter expert
(SME) to determine whether or not the intent was met by
comparing the results of the generated code.

Experimental phases
The experiment was structured into 3 phases, each targeting
different aspects of LLM performance in translating NLQs
into SQL. Phase 1 established a baseline using an exhaustive
database schema. Phase 2 introduced a business context docu-
ment, which provided plain language descriptions of data
structures. Phase 3 narrowed the focus to essential tables, aim-
ing to determine whether a more targeted approach could
enhance or match the performance observed in Phase 2.

In Phase 1, as shown in Figure 1, the LLM was given com-
prehensive schema documentation, including a 290-page PDF
detailing every table and column definition. This document
was generated automatically by exporting the complete data-
base schema using SQL Developer (https://www.oracle.com/
database/sqldeveloper/). This file was then converted directly
into a PDF for use by the RAG framework. It contains no
additional content beyond the database definitions and
metadata.

Phase 2 mirrored Phase 1 but introduced a business context
document, created by safety data experts. This document
summarized key data structures in plain language, providing
contextual insights into the relevance of the database ele-
ments (Figure 2). To promote transparency, we have pre-
pared a redacted version of the business context document
that includes only publicly available tables from vendor docu-
mentation. Refer to the Supplementary Files for insight into
the structure and purpose of the document used in our study.

In Phase 3, the source document PDF created in Phase 1
was redacted to contain only 33 essential table definitions
(see Appendix S1). These tables were selected based on our
gold standard SQL queries, which provided a pre-defined
benchmark for evaluating the accuracy of the LLM-generated
queries across all phases of the experiment. From this set of

2 JAMIA Open, 2025, Vol. 8, No. 1
D

ow
nloaded from

 https://academ
ic.oup.com

/jam
iaopen/article/8/1/ooaf003/8005804 by guest on 21 April 2025

https://www.oracle.com/database/sqldeveloper/
https://www.oracle.com/database/sqldeveloper/
https://doi.org/10.5061/dryad.2280gb63n

pre-defined SQL queries, we identified the essential tables
required to support successful query generation by the LLM.
This approach ensured that the included corpus was compre-
hensive enough to answer all NLQs and gave the LLM the
best possible opportunity to produce accurate SQL responses
for this phase of the experiment. This streamlined approach
focused the LLM on the most relevant data, aiming to
improve query generation effectiveness. (The database used
for storing our collected safety reports is a commercial prod-
uct, so we cannot share the complete contents of the database
schema. Readers interested in understanding the complexity
of this system can refer to publicly available documentation
from the software vendor. For more information, see the
OracleTM Argus documentation: https://docs.oracle.com/en/
industries/life-sciences/argus-safety/8.4.3/index.html and the
Argus Extensibility Guide: https://docs.oracle.com/health-sci-
ences/argus-suite-82/argus-enterprise/AIEXG/AIEXG.pdf.)

NLQ selection
Sixty NLQs were selected from historical user logs, covering
a broad spectrum of query complexity (see Supplementary
Data File [https://datadryad.org/stash/dataset/doi:10.5061/
dryad.2280gb63n]). These queries were used consistently
across all phases and ranged from simple to complex data
retrieval tasks.

A structured prompt guided the LLM to generate syntacti-
cally correct SQL queries while minimizing unfounded
responses. The chatbot prompt defined a specific persona,
instructing the model:

“You are an Oracle SQL expert. Given a question, gener-
ate a syntactically correct Oracle SQL query. Avoid query-
ing non-existent columns and pay close attention to
column-table associations. For keywords in the WHERE
clause, ensure case-insensitive data comparison, for

Figure 1. Phase 1 experimental design.

Figure 2. Phase 2 experimental design.

JAMIA Open, 2025, Vol. 8, No. 1 3

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/article/8/1/ooaf003/8005804 by guest on 21 April 2025

https://docs.oracle.com/en/industries/life-sciences/argus-safety/8.4.3/index.html
https://docs.oracle.com/en/industries/life-sciences/argus-safety/8.4.3/index.html
https://docs.oracle.com/health-sciences/argus-suite-82/argus-enterprise/AIEXG/AIEXG.pdf
https://docs.oracle.com/health-sciences/argus-suite-82/argus-enterprise/AIEXG/AIEXG.pdf
https://doi.org/10.5061/dryad.2280gb63n
https://doi.org/10.5061/dryad.2280gb63n
https://datadryad.org/stash/dataset/doi:10.5061/dryad.2280gb63n
https://datadryad.org/stash/dataset/doi:10.5061/dryad.2280gb63n

example, ‘upper(STATE_NAME) ¼ upper(‘deleted’)’. If
you are unable to generate the SQL query, please state
that you cannot create the query without additional infor-
mation or context, do not attempt to make anything up.”

In all phases, a vector-based retrieval strategy, utilizing
embeddings from the text-embedding-ada-002 model (https://
platform.openai.com/docs/guides/embeddings/embedding-
models), was employed. Each phase involved background
knowledge tailored to the experiment—Phase 1 used the
full schema, Phase 2 added contextual business knowl-
edge, and Phase 3 focused on essential data elements.

Each experiment employed a text splitter (chunk size: 1000
characters; overlap: 200 characters) to process inputs for the
GPT-4 model, as shown in Figure 3.

Complexity scoring algorithm
For evaluating the performance of NLQ-to-SQL code genera-
tion, we developed a scoring algorithm to objectively measure
SQL query complexity, which considers factors such as the
number of tables, joins, and clauses in the query, as well as
the estimated time required for manual creation. This method
offers a reproducible way to evaluate SQL complexity,
acknowledging that complexity assessments can vary widely
in methodology,16 as shown in Algorithm 1. The complexity
scores shared in our results were computed based on the gold
standard SQL queries developed by our SME.

Experimental setup and classification of generated
SQL
Each NLQ was presented to the LLM randomly and inde-
pendently to prevent memorization. The context was reset

Figure 3. LLM Chatbot user interface.

Algorithm 1. Compute the SQL Complexity Score

1: score 0
2: score time to create
3: score scoreþnumber of tables
4: score scoreþnumber of joins
5: score scoreþnumber of where clauses
6: if has group by¼True then
7: score scoreþ1
8: end if
9: if has order¼True then
10: score scoreþ1
11: end if
12: if has aggregation¼True then
13: score scoreþ1
14: end if
15: return score

4 JAMIA Open, 2025, Vol. 8, No. 1
D

ow
nloaded from

 https://academ
ic.oup.com

/jam
iaopen/article/8/1/ooaf003/8005804 by guest on 21 April 2025

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models

between evaluations to ensure no data carried over between
phases. A safety data expert evaluated each SQL query, cate-
gorizing them into pass, fail, or partial pass based on prede-
fined criteria.

A “pass” was assigned to SQL queries that were executable
without modifications and returned the same expected results
as the manually created SQL query. This classification
required the query to be syntactically correct, reference the
correct table and column names, include logical JOIN condi-
tions and WHERE clauses, and accurately capture the intent
of the NLQ.

A “fail” occurred when the LLM could not generate a valid
query. This included queries that were syntactically incorrect,
referenced nonexistent tables or columns, or failed to capture
the NLQ’s intent. Queries in this category either could not be
executed or returned entirely incorrect results.

A “partial pass” was assigned to queries that were syntacti-
cally valid and executable but required minor modifications
(no more than 2 edits) to produce correct results. For exam-
ple, edits might correct a column reference or JOIN condition
while maintaining the query’s logical intent. In addition, a
query in this category may return data that was partially cor-
rect, such as including extraneous columns.

For all categories, a domain expert manually verified the
generated SQL against a gold standard query to confirm its
validity and ensure that results matched the expected output.
This process removed any ambiguity in the classification
criteria.

This classification approach informed the development of
our experimental phases. Phases 1 and 2 evaluated perform-
ance with and without contextual knowledge, while Phase 3
focused the LLM on essential tables to assess whether this
refinement improved performance.

The classification of results was consistent across all
phases. For a query to qualify as a pass or partial pass, it had
to (1) be fully executable, (2) retrieve the expected data, and
(3) align with the intent of the NLQ. Queries in the partial
pass category required only minor modifications, such as cor-
recting table or column references, without changing the logi-
cal structure of the query. After these adjustments, partial
pass queries returned results identical to the handcrafted
SQL.

Constructing the business context document
The business context document was developed for use in
Phase 2 and served as a crucial differentiator in enhancing the
LLM’s SQL generation capabilities. This document captured
domain-specific knowledge in unstructured text form, priori-
tized frequently used tables aligned with regulatory and
reporting requirements, and incorporated insights from
SMEs. Unlike approaches such as CHESS, which may lack
this depth of contextual understanding, our method ensured
that the LLM had access to detailed domain knowledge to
significantly improve query generation accuracy. The final
business context document contained 33 essential table defi-
nitions, along with a glossary, business rules, and relation-
ships necessary for query generation (see Appendix S1).

Examples of domain-specific guidance included:
Definition “New case”: A new case includes cases not yet

assigned to any database user (eg, Intake Specialist or Data
Entry Specialist) as well as cases assigned but not yet
accepted by the user.

Additionally, explicit SQL generation suggestions were
provided, such as:

� Avoid using SELECT � due to the vastness of some
tables.

� Always join tables using their primary and foreign keys.
� Consider database performance.

In a production environment, maintenance of the business
context document would be required, as updates to the data-
base schema could impact the document’s utility, and reliabil-
ity should be monitored over time. A redacted version of our
business context document is provided as a supplement to the
paper. The only portions redacted are proprietary data struc-
tures not publicly shared by the software vendor.

An illustrative example of the business context document
in action is exemplified by one of the NLQs presented which
requested a count of follow-up letters sent to patients. The
database does not explicitly track letters, but the business
context document specifies that these are stored in case
attachment files, using the field CLASSIFICATION. For
follow-up letters, the relevant SQL query rule is defined as
CLASSIFICATION like ’%FU Attempt%’, bridging the
gap between user queries and the database structure. Without
our business context document, the LLM was unable to
deduce this connection on its own from the raw schema.

System design and implementation
LLMs demonstrate proficiency in answering general queries,
but they often fall short when required to extract information
from specific contexts without domain-specific training.17,18

Fine-tuning LLMs with contextual knowledge, such as busi-
ness documents, significantly enhances their ability to gener-
ate accurate, contextually informed responses.19

To leverage this capability, we implemented a RAG-based
pipeline tailored to SQL query generation in specific business
contexts. While inspired by approaches described in prior
work,20 our methodology diverges in key aspects to meet the
unique requirements of our application. Specifically, we used
LangChain to preprocess and split the business context docu-
ment into manageable chunks, which were then embedded
into vector representations using OpenAI’s text-embed-
ding-ada-002 model. These embeddings were stored and
indexed in a FAISS (Facebook AI Similarity Search) vector
database, allowing for efficient similarity-based retrieval.

Our pipeline retrieves the top-7 most relevant document
chunks for each user query using a similarity-based retriever
interface. Unlike methods described in,20 which fine-tune
retrievers and generators jointly, we rely on OpenAI’s GPT-4
(hosted on Azure) for the generation step without additional
fine-tuning. The retrieved chunks serve as contextual input,
enabling GPT-4 to generate accurate and syntactically correct
SQL queries tailored to the schema and specific requirements
outlined in the custom documentation.

For instance, if we asked the model to “generate a pivot
table of product family counts by group,” the system would
combine retrieved document chunks with query context and
ensures compliance with database schema constraints (eg,
matching columns to tables and handling case sensitivity in
WHERE clauses). Importantly, during testing, we explicitly
did not allow the system to retain conversational history
between queries to ensure that each NLQ to SQL conversion

JAMIA Open, 2025, Vol. 8, No. 1 5

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/article/8/1/ooaf003/8005804 by guest on 21 April 2025

https://doi.org/10.5061/dryad.2280gb63n

was evaluated independently, avoiding any influence from
prior interactions.

This hybrid approach—using pre-trained embeddings,
vector-based retrieval, and generative LLMs—helps to
improve SQL query generation contextually aligned with the
business needs. The complete implementation details, includ-
ing source code, are available in Appendix S1.

Results
Our experiment evaluated the impact of integrating a busi-
ness context document with LLMs on the complexity and
accuracy of SQL queries generated from NLQs. After apply-
ing our scoring algorithm to the generated SQL queries, we
conducted a distribution analysis of the complexity scores.
Figure 4 illustrates this distribution, categorizing SQL query
complexity as “low,” “medium,” or “high.” These categories
were based on scoring percentiles: queries scoring below the
25th percentile were classified as “low,” those within
the interquartile range (IQR) as “medium,” and those above
the 75th percentile as “high.” This method provides an objec-
tive measure of SQL query complexity, incorporating both
subjective expertise and quantifiable metrics like table count.

Of the 60 NLQs analyzed, 17 were categorized as “low”
complexity, 31 as “medium,” and 12 as “high.” As outlined
in the methods, the LLM-generated SQL queries were classi-
fied as “pass,” “partial success,” or “fail,” based on their
accuracy. In Phase 1, where only the database schema was
provided, the LLM achieved a pass rate of 8.3%, with 78.3%
failing to generate valid SQL queries (Table 1). This high-
lighted the challenges of query generation without additional
context.

The integration of the business context document in Phase
2 significantly improved performance, increasing the pass
rate to 78.3% (Table 2). This demonstrates the critical role of
contextual knowledge in enhancing the LLM’s ability to gen-
erate accurate SQL queries, particularly for complex NLQs.
Additionally, when excluding high-complexity queries, the
LLM achieved an 85.4% pass rate, with 41 out of 48 low
and medium complexity queries passing, and only 5 (10.4%)
resulting in failure.

Statistical analysis using Fisher’s Exact Test revealed a
substantial improvement, with the P-value dropping
from .1655 without the business context to .0006 with it,
confirming the statistically significant performance boost
provided by contextual information. Fisher’s Exact Test is a
non-parametric statistical test commonly used when sample
sizes are small and the data can be represented in a contin-
gency table. This test was chosen for its robustness in han-
dling categorical data and its suitability for our dataset,
which involved discrete counts of query results classified as
“pass,” “partial pass,” or “fail.” The P-value from this test
quantifies the probability of observing the data (or something
more extreme) under the null hypothesis that there is no dif-
ference between the groups being compared—in this case, the
performance of the LLM with and without the business con-
text document (see Appendix S1).

In our analysis:

� The P-value decreased from .1655 without the business
context document to .0006 when the document was
included, indicating a significant performance
improvement.

� A P-value of .1655 suggests that the observed difference
could occur by chance, meaning it is not statistically sig-
nificant (typically, a P-value >.05 fails to reject the null
hypothesis).

� A P-value of .0006, however, is well below the conven-
tional threshold of .05, indicating that the observed
improvement with the business context document is
unlikely due to random chance. This confirms that the
inclusion of contextual information significantly enhances
the LLM’s performance in generating SQL queries.

The improvements were consistent across all complexity
levels, highlighting the effectiveness of contextual priming in
improving LLM SQL generation. Despite some remaining
challenges with high-complexity queries, these results suggest
that business context documents are a valuable tool for
improving database interactions and LLM applications in
data-intensive fields.

In Phase 3, the schema was narrowed to essential tables
without including the business context document. This phase

Figure 4. Boxplot of SQL complexity scores.

Table 1. LLM performance with DB schema only.

Result NLQ complexity

Low Medium High Total Percent

Pass 3 2 0 5 (8.3)
Fail 11 27 9 47 (78.3)
Partial pass 3 2 3 8 (13.3)
Total 17 31 12 60

Abbreviations: DB ¼ Database; LLM ¼ Large Language Model; NLQ ¼
Natural Language Query.

Table 2. LLM performance with business context document.

Result NLQ complexity

Low Medium High Total Percent

Pass 16 25 6 47 (78.3)
Fail 0 5 0 5 (8.3)
Partial pass 1 1 6 8 (13.3)
Total 17 31 12 60

Abbreviations: LLM ¼ Large Language Model; NLQ ¼ Natural Language
Query.

6 JAMIA Open, 2025, Vol. 8, No. 1
D

ow
nloaded from

 https://academ
ic.oup.com

/jam
iaopen/article/8/1/ooaf003/8005804 by guest on 21 April 2025

https://doi.org/10.5061/dryad.2280gb63n
https://doi.org/10.5061/dryad.2280gb63n

aimed to reduce ambiguity and assess baseline performance
with a smaller set of relevant tables. The results showed mod-
est improvements, reducing the failure rate from 78% to
50%. However, many queries still fell into the “partial pass”
category, meaning they would require manual intervention to
be revised into fully functional SQL queries (Table 3). A
“partial pass” classification indicates that the query structure
aligns with the intended outcome but needs minimal changes
to be executable. Manual intervention typically involves cor-
recting minor issues, such as typos or references to incorrect
column names, while maintaining the overall structure that is
efficient and appropriate for answering the user’s query. A
query is classified as a “fail” if the LLM indicates it cannot
generate a query, references the wrong tables, produces out-
put inconsistent with the user’s NLQ request, or fundamen-
tally answers the wrong question.

Fisher’s Exact Test for Phase 3 yielded a P-value of .2373,
indicating that narrowing the schema led to modest improve-
ments but did not match the success achieved with the busi-
ness context document. These findings emphasize that while
schema optimization can help, the comprehensive insights
provided by the business context document play a more crit-
ical role in enhancing the LLM’s SQL query generation
accuracy.

Discussion
Through our multi-phase analysis, this study has shown the
significant impact of context-enriched LLMs in enhancing
data retrieval from NLQs within PV and other data-intensive
domains. By integrating OpenAI’s GPT-4 model with a busi-
ness context document, we markedly improved the model’s
ability to generate syntactically precise and contextually rele-
vant queries. This approach offers a promising pathway
toward enhancing access to complex databases and enhanc-
ing the intuitiveness and efficiency of query formulation.

Our findings indicate that augmenting the LLM with con-
textual knowledge substantially improves query generation
accuracy. Specifically, the introduction of a business context
document resulted in a success rate exceeding 78% across a
wide range of query complexities, highlighting the critical
role of context in bridging the gap between natural language
and database queries.

Recent literature has identified similar challenges in text-
to-SQL generation. For example, Qu et al. identify common
issues such as schema-based and logic-based hallucinations.15

Their Task Alignment (TA) strategy aims to mitigate these
hallucinations by aligning tasks with familiar contexts. Our
approach, which incorporates a business context document,
appears to effectively eliminate many of these hallucinations
by providing detailed, domain-specific knowledge that guides

the LLM in generating accurate SQL queries. This alignment
reduces the risk of generating erroneous or irrelevant queries.

Moreover, the CHESS framework’s benchmarking using
the BIRD database presents an incongruent point of compari-
son. BIRD-SQL (https://bird-bench.github.io/) contains hun-
dreds of sub-datasets; however, it does not clearly indicate
the complexity of these sub-datasets, which may not reflect
the challenges posed by enterprise databases like ours. Unlike
the BIRD benchmarks, our complexity algorithm explicitly
documents how the level of complexity was determined. Our
enterprise database, which again contains over 500 tables
with an average of more than 50 columns per table, encom-
passes multiple ambiguities and complex relationships. The
database represents over 5 million safety cases, with the larg-
est table containing nearly 1.3 billion rows, and a single
safety case may have as many as 100 products and 100 events
reported. These characteristics significantly impact the con-
version of NLQs to valid SQL queries for retrieving relevant
safety data. This suggests that the complexity of real-world
applications is not adequately represented in BIRD-SQL,
highlighting the need for more representative benchmarking
datasets.

While our research seemingly marks a significant advance-
ment in making informatics retrieval more accessible, ena-
bling non-technical users to harness data-driven insights for
more inclusive and efficient decision-making, it is essential to
interpret our findings with caution. The efficacy of the busi-
ness context document was assessed with a relatively small
set of NLQs within a single enterprise database. The scalabil-
ity and generalizability of our findings to other databases
remain to be validated. Future research should aim to vali-
date these results across broader datasets and diverse data-
base architectures to fully understand the potential and
limitations of our methodology.

Further advancements are necessary. Our system identifies
key areas for additional research and development, particu-
larly in handling complex queries and resolving ambiguous
user intents. Concerns related to scalability and implementa-
tion within large, dynamic enterprise environments highlight
the need for future investigations to enhance the robustness
and applicability of our methodology.

Conclusion
This study demonstrates the potential of leveraging LLMs,
specifically OpenAI’s GPT-4, within a RAG framework to
improve data retrieval from complex PV databases. Integrat-
ing a business context document significantly enhanced the
model’s ability to generate accurate and contextually relevant
SQL queries from NLQs, with the success rate increasing
from 8.3% using the database schema alone to 78.3% with
the context document.

Our findings emphasize the critical importance of contex-
tual knowledge in bridging the gap between natural language
and database queries, making data retrieval more intuitive
and accessible for non-technical users. While these results are
promising, further validation is needed to assess the scalabil-
ity and generalizability of our approach across different data-
bases and larger datasets.

Future research should aim to validate these findings across
a variety of database architectures and more extensive data-
sets, exploring the methodology’s broader potential and limi-
tations. Additionally, improving the system’s ability to

Table 3. Phase 3 LLM performance with narrowed schema definition.

Result NLQ complexity

Low Medium High Total Percent

Pass 4 2 0 6 (10)
Fail 6 18 6 30 (50)
Partial pass 7 11 6 24 (40)
Total 17 31 12 60

Abbreviations: LLM ¼ Large Language Model; NLQ ¼Natural Language
Query.

JAMIA Open, 2025, Vol. 8, No. 1 7

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/article/8/1/ooaf003/8005804 by guest on 21 April 2025

https://bird-bench.github.io/

handle complex queries and ambiguous user intents will be
key to future development.

In summary, this study introduces a novel approach for
employing LLMs in data retrieval through NLQs, improving
the accessibility of PV data analysis. By integrating LLMs
with a business context document, we propose a flexible pipe-
line that can be applied across multiple sectors, making com-
plex databases more accessible to a wider range of users and
supporting data-driven decision-making in various domains.

Acknowledgments
This research was supported in part by additional team mem-
bers who helped with testing and development of the archi-
tectural framework to support context based LLMs,
including Marcin Karwowski (GSK, Poland), Christie
Roshan (GSK, United Kingdom), and Richard Barlow (GSK,
United States), all members of the PV Systems team in Global
Safety. The authors would like to thank the Akkodis Belgium
platform for manuscript coordination, on behalf of GSK.

Supplementary Data
Data available from the Dryad Digital Repository: https://
doi.org/10.5061/dryad.2280gb63n.

Funding
GSK covered all costs associated with the conduct of the
study and the development of the manuscript and the deci-
sion to publish the manuscript. J.P., R.K., and A.B. are
employed by GSK and hold financial equities. V.C. is a con-
tractor of GSK.

Conflicts of interest
This manuscript has not been submitted to, nor is under
review at, another journal or other publishing venue. The
authors have no competing interests to declare that are rele-
vant to the content of this article.

References
01. Beninger P. Pharmacovigilance: an overview. Clin Ther.

2018;40:1991-2004. https://doi.org/10.1016/j.clinthera.2018.07.012
02. Brass S, Goldberg C. Semantic errors in SQL queries: a quite com-

plete list. J Syst Softw. 2006;79:630-644. https://doi.org/10.1016/
j.jss.2005.06.028

03. Sivarajkumar S, Mohammad HA, Oniani D, et al. Clinical infor-
mation retrieval: a literature review. J Healthc Inform Res.
2024:1-40. https://dx.doi.org/10.1007/s41666-024-00159-4

04. Mao Y, Miller RA, Bodenreider O, Nguyen V, Fung KW. Two
complementary AI approaches for predicting UMLS semantic
group assignment: heuristic reasoning and deep learning. J Am

Med Inform Assoc. 2023;30:1887-1894. https://doi.org/10.1093/
jamia/ocad152

05. Talaei S, Pourreza M, Chang Y-C, Mirhoseini A, Saberi A. CHESS:
contextual harnessing for efficient SQL synthesis. 2024. Accessed
December 1, 2024. https://doi.org/10.48550/arXiv.2405.16755

06. Taipalus T, Siponen M, Vartiainen T. Errors and complications in
SQL query formulation. ACM Trans Comput Educ.
2018;18:1-29. https://doi.org/10.1145/3231712

07. Zloof MM. Query-by-example: a data base language. IBM Syst J.
1977;16:324-343. https://doi.org/10.1147/sj.164.0324

08. Ramakrishnan R, Gehrke J. Database Management Systems.
McGraw-Hill, Inc.; 2002.

09. Dauphin YN, Fan A, Auli M, Grangier D. Language modeling
with gated convolutional networks. In: International Conference
on Machine Learning, pp. 933-941. 2017. https://doi.org/10.
48550/arXiv.1612.08083

10. Li J, Hui B, Qu G, et al. Can LLM already serve as a database inter-
face? a big bench for large-scale database grounded text-to-SQLs.
arXiv, arXiv:2305.03111, 2023, Preprint. https://doi.org/10.
48550/arXiv.2305.03111

11. Gao D, Wang H, Li Y, et al. Text-to-SQL empowered by large lan-
guage models: a benchmark evaluation. arXiv, arXiv:2308.15363,
2023. Accessed December 1, 2024. https://doi.org/10.48550/
arXiv.2308.15363

12. Painter JL, Mahaux O, Vanini M, et al. Enhancing drug safety doc-
umentation search capabilities with large language models: a user-
centric approach. In: 2023 International Conference on Computa-
tional Science and Computational Intelligence (CSCI). 2023.
https://doi.org/10.1109/CSCI62032.2023.00015

13. Roberson R, Kaki G, Trivedi A. Analyzing the effectiveness of
large language models on text-to-SQL synthesis. arXiv,
arXiv:2401.12379, 2024. Accessed December 1, 2024. Preprint.
https://doi.org/10.48550/arXiv.2401.12379

14. Zhang Q, Dong J, Chen H, Li W, Huang F, Huang X. Structure
guided large language model for SQL generation. arXiv,
arXiv:2402.13284, 2024. Accessed December 1, 2024. Preprint.
https://doi.org/10.48550/arXiv.2402.13284

15. Qu G, Li J, Li B, et al. Before generation, align it! a novel and effec-
tive strategy for mitigating hallucinations in text-to-SQL genera-
tion. arXiv, arXiv:2405.15307, 2024. Accessed December 1,
2024. Preprint. https://doi.org/10.48550/arXiv.2405.15307

16. Simon M, Pataki N. SQL code complexity analysis. In: Proceed-
ings of the 8th International Conference of Applied Informatics.
2010. http://icai.ektf.hu/pdf/ICAI2010-vol1-pp353-359.pdf

17. Brown T, Mann B, Ryder N, et al. Language models are few-shot
learners. Adv Neural Inform Process Syst. 2020;33:1877-1901.
https://doi.org/10.48550/arXiv.2005.14165

18. Xie SM, Raghunathan A, Liang P, Ma T. An explanation of in-
context learning as implicit bayesian inference. arXiv,
arXiv:2111.02080, 2021, Preprint. https://doi.org/10.48550/
arXiv.2111.02080

19. Radford A, Wu J, Child R, et al. Language models are unsuper-
vised multitask learners. OpenAI Blog. 2019;1:9.

20. Lewis P, Perez E, Piktus A, et al. Retrieval-augmented generation
for knowledge-intensive NLP tasks. Adv Neural Inf Process
Syst. 2020;33:9459-9474. https://doi.org/10.48550/arXiv.2005.
11401

© The Author(s) 2025. Published by Oxford University Press on behalf of the American Medical Informatics Association.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
JAMIA Open, 2025, 8, 1–8
https://doi.org/10.1093/jamiaopen/ooaf003
Research and Applications

8 JAMIA Open, 2025, Vol. 8, No. 1
D

ow
nloaded from

 https://academ
ic.oup.com

/jam
iaopen/article/8/1/ooaf003/8005804 by guest on 21 April 2025

https://doi.org/10.5061/dryad.2280gb63n
https://doi.org/10.5061/dryad.2280gb63n
https://doi.org/10.1016/j.clinthera.2018.07.012
https://doi.org/10.1016/j.jss.2005.06.028
https://doi.org/10.1016/j.jss.2005.06.028
https://dx.doi.org/10.1007/s41666-024-00159-4
https://doi.org/10.1093/jamia/ocad152
https://doi.org/10.1093/jamia/ocad152
https://doi.org/10.48550/arXiv.2405.16755
https://doi.org/10.1145/3231712
https://doi.org/10.1147/sj.164.0324
https://doi.org/10.48550/arXiv.1612.08083
https://doi.org/10.48550/arXiv.1612.08083
https://doi.org/10.48550/arXiv.2305.03111
https://doi.org/10.48550/arXiv.2305.03111
https://doi.org/10.48550/arXiv.2308.15363
https://doi.org/10.48550/arXiv.2308.15363
https://doi.org/10.1109/CSCI62032.2023.00015
https://doi.org/10.48550/arXiv.2401.12379
https://doi.org/10.48550/arXiv.2402.13284
https://doi.org/10.48550/arXiv.2405.15307
http://icai.ektf.hu/pdf/ICAI2010-vol1-pp353-359.pdf
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2111.02080
https://doi.org/10.48550/arXiv.2111.02080
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2005.11401

	Active Content List
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Acknowledgments
	Supplementary Data
	Funding
	Conflicts of interest
	References

