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Abstract
Objective: To enhance the accuracy of information retrieval from pharmacovigilance (PV) databases by employing Large Language Models 
(LLMs) to convert natural language queries (NLQs) into Structured Query Language (SQL) queries, leveraging a business context document.
Materials and Methods: We utilized OpenAI’s GPT-4 model within a retrieval-augmented generation (RAG) framework, enriched with a busi-
ness context document, to transform NLQs into executable SQL queries. Each NLQ was presented to the LLM randomly and independently to 
prevent memorization. The study was conducted in 3 phases, varying query complexity, and assessing the LLM’s performance both with and 
without the business context document.
Results: Our approach significantly improved NLQ-to-SQL accuracy, increasing from 8.3% with the database schema alone to 78.3% with the 
business context document. This enhancement was consistent across low, medium, and high complexity queries, indicating the critical role of 
contextual knowledge in query generation.
Discussion: The integration of a business context document markedly improved the LLM’s ability to generate accurate SQL queries (ie, both 
executable and returning semantically appropriate results). Performance achieved a maximum of 85% when high complexity queries are 
excluded, suggesting promise for routine deployment.
Conclusion: This study presents a novel approach to employing LLMs for safety data retrieval and analysis, demonstrating significant advance-
ments in query generation accuracy. The methodology offers a framework applicable to various data-intensive domains, enhancing the accessi-
bility of information retrieval for non-technical users.

Lay Summary
Our research explores how large language models (LLMs), such as GPT-4, can assist in generating precise Structured Query Language (SQL) 
queries to retrieve data from complex pharmacovigilance databases used in drug safety monitoring. These databases have intricate structures 
and vast amounts of data, making data retrieval challenging for non-experts and potentially impacting patient safety. We introduced a novel 
approach that enhances LLMs by integrating a “business context document”—a guide containing essential database information and rules. 
This addition improved the LLM’s success rate in generating correct SQL queries from 8.3% to 78.3%, and up to 85.4% when excluding high- 
complexity queries. Our findings suggest that supplementing technical data dictionaries with detailed contextual information enables more 
accurate, context-aware responses. This approach could make data retrieval more intuitive and accessible for healthcare professionals and 
researchers without deep technical knowledge, facilitating faster, informed decision-making in drug safety. While promising, further validation 
across different databases is needed to confirm broader applicability. This study highlights the importance of integrating domain-specific context 
to bridge the gap between natural language questions and complex data systems.
Key words: pharmacovigilance; drug safety; information retrieval; large language models (LLMs); natural language processing (NLP). 

Introduction
Drug safety, or pharmacovigilance (PV), involves the system-
atic assessment of medications and vaccines to ensure that 
benefits outweigh risks. Central to PV are extensive databases 
compiling individual case safety reports (ICSRs), which are 
crucial for risk identification, strategy development, and reg-
ulatory reporting.1

Navigating safety databases to generate precise queries is 
inherently complex, requiring specialized expertise due to their 

vast, multi-table, and interlinked structures. Unlike many 
other relational databases, safety databases must manage 
diverse case types, regulatory requirements, and variations in 
product and event reports, all while ensuring compliance with 
stringent reporting standards. As noted by Brass and Gold-
berg, this complexity often arises from the mismatch between 
ontologies and relational databases,2 leaving users struggling 
to articulate accurate search criteria. The prevalence of query 
misapplication in healthcare further underscores the need for 
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enhanced methods.3 Recent studies demonstrate the effective-
ness of combining heuristic reasoning with deep learning for 
predicting semantic group assignments, achieving high accu-
racy and potentially supplementing automated query genera-
tion tasks.4 For example, the CHESS framework introduces a 
multi-component pipeline leveraging large language model 
(LLM)-based methods for entity and context retrieval, schema 
selection, and structured query language (SQL) generation, 
improving data retrieval in complex real-world databases.5

Our research presents a novel approach to converting natu-
ral language queries (NLQs) into SQL code for retrieving 
information from large, complex safety datasets. Safety data-
bases present unique challenges, storing highly diverse data— 
ranging from case reports to product details, adverse events, 
and regulatory submissions—while complying with stringent 
reporting requirements across regions. Our company’s safety 
database contains over 500 tables, with more than 50 col-
umns per table, spanning 50 years of data and encompassing 
at least 5000 distinct fields. The largest table holds nearly 1.3 
billion rows, and a single safety case may include as many as 
100 products and 100 events, adding to the complexity of 
tracking and querying. To address these challenges, we devel-
oped a business context document that distills intricate busi-
ness rules and database knowledge from PV experts into 
accessible, plain language. Integrating this context document 
with the LLM enhances the model’s ability to craft queries 
that closely align with business needs, overcoming the limita-
tions of relying solely on database metadata.

While research on NLQ-to-SQL tasks is ongoing, our 
approach significantly differs from frameworks like CHESS 
by introducing the business context document. This docu-
ment enhances accuracy by providing the LLM with domain- 
specific knowledge, aligning query generation with business 
rules and database structures. Contextual knowledge is cru-
cial for improving domain-specific NLQ tasks, with applic-
ability beyond PV. Our work addresses the challenge of 
navigating an extremely large, complex database, a level of 
complexity not explicitly tackled by the CHESS framework.

Crafting queries in PV datasets requires both technical and 
scientific expertise, and translating safety scientists’ nuanced 
requests into precise code poses a significant challenge with 
considerable room for error.6 While tools like Query-by- 
Example (QBE) offer simplified means of crafting database 
queries,7 they fall short in handling complex needs.8

The rise of LLMs in natural language processing has 
improved data management by enabling more efficient and 
accurate query generation.9–11 However, LLMs alone often 
provide only reasonable, but not perfect, performance in 
domain-specific tasks.12 In heavily regulated environments 
like PV, accuracy is paramount, requiring approaches that 
integrate the expertise of domain specialists.

Recent evaluations highlight performance gaps between 
proprietary models like GPT-4 and open-source alterna-
tives.10,13,14 While general query generation tasks have 
achieved up to 72% accuracy through advanced retrieval and 
schema selection techniques,5 LLM-generated SQL queries 
can suffer from issues like “hallucinations” and other 
errors.15 This underscores the need for supplementing LLMs 
with detailed contextual information to improve query preci-
sion in PV and other highly regulated domains.

Relying on technical teams for safety query formulation 
can introduce delays, underscoring the need for solutions that 

empower safety scientists with direct access to data through 
LLM-driven tools. Our approach builds on advancements in 
LLM technology, offering an intuitive interface that allows 
non-technical users to perform complex data queries, poten-
tially enhancing PV data analysis and reporting.12 By inte-
grating LLMs with a business context document, we aim to 
narrow the gap between technical complexity and domain 
expertise, enhancing access to critical drug safety informatics 
and supporting informed decision-making.

Methods
Our study aimed to transform NLQs into OracleTM SQL 
queries that are both executable code and semantically 
appropriate, utilizing LLMs within a retrieval-augmented 
generation (RAG) framework enhanced by a detailed busi-
ness context document. For the purposes of this study, 
“executable code” refers to SQL queries that are free of struc-
tural errors and can be executed without modification, while 
“semantically appropriate” denotes queries that accurately 
fulfill the user’s intent by retrieving the correct data in 
response to the NLQ. The experiment was conducted in 3 
phases to assess the LLM’s capability in SQL query genera-
tion under varying levels of contextual knowledge. The 
results of all NLQ-to-SQL generation was compared to a 
gold standard query generated by a subject matter expert 
(SME) to determine whether or not the intent was met by 
comparing the results of the generated code.

Experimental phases
The experiment was structured into 3 phases, each targeting 
different aspects of LLM performance in translating NLQs 
into SQL. Phase 1 established a baseline using an exhaustive 
database schema. Phase 2 introduced a business context docu-
ment, which provided plain language descriptions of data 
structures. Phase 3 narrowed the focus to essential tables, aim-
ing to determine whether a more targeted approach could 
enhance or match the performance observed in Phase 2.

In Phase 1, as shown in Figure 1, the LLM was given com-
prehensive schema documentation, including a 290-page PDF 
detailing every table and column definition. This document 
was generated automatically by exporting the complete data-
base schema using SQL Developer (https://www.oracle.com/ 
database/sqldeveloper/). This file was then converted directly 
into a PDF for use by the RAG framework. It contains no 
additional content beyond the database definitions and 
metadata.

Phase 2 mirrored Phase 1 but introduced a business context 
document, created by safety data experts. This document 
summarized key data structures in plain language, providing 
contextual insights into the relevance of the database ele-
ments (Figure 2). To promote transparency, we have pre-
pared a redacted version of the business context document 
that includes only publicly available tables from vendor docu-
mentation. Refer to the Supplementary Files for insight into 
the structure and purpose of the document used in our study.

In Phase 3, the source document PDF created in Phase 1 
was redacted to contain only 33 essential table definitions 
(see Appendix S1). These tables were selected based on our 
gold standard SQL queries, which provided a pre-defined 
benchmark for evaluating the accuracy of the LLM-generated 
queries across all phases of the experiment. From this set of 

2                                                                                                                                                                                               JAMIA Open, 2025, Vol. 8, No. 1 
D

ow
nloaded from

 https://academ
ic.oup.com

/jam
iaopen/article/8/1/ooaf003/8005804 by guest on 21 April 2025

https://www.oracle.com/database/sqldeveloper/
https://www.oracle.com/database/sqldeveloper/
https://doi.org/10.5061/dryad.2280gb63n


pre-defined SQL queries, we identified the essential tables 
required to support successful query generation by the LLM. 
This approach ensured that the included corpus was compre-
hensive enough to answer all NLQs and gave the LLM the 
best possible opportunity to produce accurate SQL responses 
for this phase of the experiment. This streamlined approach 
focused the LLM on the most relevant data, aiming to 
improve query generation effectiveness. (The database used 
for storing our collected safety reports is a commercial prod-
uct, so we cannot share the complete contents of the database 
schema. Readers interested in understanding the complexity 
of this system can refer to publicly available documentation 
from the software vendor. For more information, see the 
OracleTM Argus documentation: https://docs.oracle.com/en/ 
industries/life-sciences/argus-safety/8.4.3/index.html and the 
Argus Extensibility Guide: https://docs.oracle.com/health-sci-
ences/argus-suite-82/argus-enterprise/AIEXG/AIEXG.pdf.)

NLQ selection
Sixty NLQs were selected from historical user logs, covering 
a broad spectrum of query complexity (see Supplementary 
Data File [https://datadryad.org/stash/dataset/doi:10.5061/ 
dryad.2280gb63n]). These queries were used consistently 
across all phases and ranged from simple to complex data 
retrieval tasks.

A structured prompt guided the LLM to generate syntacti-
cally correct SQL queries while minimizing unfounded 
responses. The chatbot prompt defined a specific persona, 
instructing the model: 

“You are an Oracle SQL expert. Given a question, gener-
ate a syntactically correct Oracle SQL query. Avoid query-
ing non-existent columns and pay close attention to 
column-table associations. For keywords in the WHERE 
clause, ensure case-insensitive data comparison, for 

Figure 1. Phase 1 experimental design. 

Figure 2. Phase 2 experimental design.
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example, ‘upper(STATE_NAME) ¼ upper(‘deleted’)’. If 
you are unable to generate the SQL query, please state 
that you cannot create the query without additional infor-
mation or context, do not attempt to make anything up.”

In all phases, a vector-based retrieval strategy, utilizing 
embeddings from the text-embedding-ada-002 model (https:// 
platform.openai.com/docs/guides/embeddings/embedding- 
models), was employed. Each phase involved background 
knowledge tailored to the experiment—Phase 1 used the 
full schema, Phase 2 added contextual business knowl-
edge, and Phase 3 focused on essential data elements.

Each experiment employed a text splitter (chunk size: 1000 
characters; overlap: 200 characters) to process inputs for the 
GPT-4 model, as shown in Figure 3.

Complexity scoring algorithm
For evaluating the performance of NLQ-to-SQL code genera-
tion, we developed a scoring algorithm to objectively measure 
SQL query complexity, which considers factors such as the 
number of tables, joins, and clauses in the query, as well as 
the estimated time required for manual creation. This method 
offers a reproducible way to evaluate SQL complexity, 
acknowledging that complexity assessments can vary widely 
in methodology,16 as shown in Algorithm 1. The complexity 
scores shared in our results were computed based on the gold 
standard SQL queries developed by our SME.

Experimental setup and classification of generated 
SQL
Each NLQ was presented to the LLM randomly and inde-
pendently to prevent memorization. The context was reset 

Figure 3. LLM Chatbot user interface.

Algorithm 1. Compute the SQL Complexity Score 

1: score 0
2: score time to create
3: score scoreþnumber of tables
4: score scoreþnumber of joins
5: score scoreþnumber of where clauses
6: if has group by¼True then
7:   score scoreþ1
8: end if
9: if has order¼True then
10:   score scoreþ1
11: end if
12: if has aggregation¼True then
13: score scoreþ1
14: end if
15: return score
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between evaluations to ensure no data carried over between 
phases. A safety data expert evaluated each SQL query, cate-
gorizing them into pass, fail, or partial pass based on prede-
fined criteria.

A “pass” was assigned to SQL queries that were executable 
without modifications and returned the same expected results 
as the manually created SQL query. This classification 
required the query to be syntactically correct, reference the 
correct table and column names, include logical JOIN condi-
tions and WHERE clauses, and accurately capture the intent 
of the NLQ.

A “fail” occurred when the LLM could not generate a valid 
query. This included queries that were syntactically incorrect, 
referenced nonexistent tables or columns, or failed to capture 
the NLQ’s intent. Queries in this category either could not be 
executed or returned entirely incorrect results.

A “partial pass” was assigned to queries that were syntacti-
cally valid and executable but required minor modifications 
(no more than 2 edits) to produce correct results. For exam-
ple, edits might correct a column reference or JOIN condition 
while maintaining the query’s logical intent. In addition, a 
query in this category may return data that was partially cor-
rect, such as including extraneous columns.

For all categories, a domain expert manually verified the 
generated SQL against a gold standard query to confirm its 
validity and ensure that results matched the expected output. 
This process removed any ambiguity in the classification 
criteria.

This classification approach informed the development of 
our experimental phases. Phases 1 and 2 evaluated perform-
ance with and without contextual knowledge, while Phase 3 
focused the LLM on essential tables to assess whether this 
refinement improved performance.

The classification of results was consistent across all 
phases. For a query to qualify as a pass or partial pass, it had 
to (1) be fully executable, (2) retrieve the expected data, and 
(3) align with the intent of the NLQ. Queries in the partial 
pass category required only minor modifications, such as cor-
recting table or column references, without changing the logi-
cal structure of the query. After these adjustments, partial 
pass queries returned results identical to the handcrafted 
SQL.

Constructing the business context document
The business context document was developed for use in 
Phase 2 and served as a crucial differentiator in enhancing the 
LLM’s SQL generation capabilities. This document captured 
domain-specific knowledge in unstructured text form, priori-
tized frequently used tables aligned with regulatory and 
reporting requirements, and incorporated insights from 
SMEs. Unlike approaches such as CHESS, which may lack 
this depth of contextual understanding, our method ensured 
that the LLM had access to detailed domain knowledge to 
significantly improve query generation accuracy. The final 
business context document contained 33 essential table defi-
nitions, along with a glossary, business rules, and relation-
ships necessary for query generation (see Appendix S1).

Examples of domain-specific guidance included:
Definition “New case”: A new case includes cases not yet 

assigned to any database user (eg, Intake Specialist or Data 
Entry Specialist) as well as cases assigned but not yet 
accepted by the user.

Additionally, explicit SQL generation suggestions were 
provided, such as:

� Avoid using SELECT � due to the vastness of some 
tables. 

� Always join tables using their primary and foreign keys. 
� Consider database performance. 

In a production environment, maintenance of the business 
context document would be required, as updates to the data-
base schema could impact the document’s utility, and reliabil-
ity should be monitored over time. A redacted version of our 
business context document is provided as a supplement to the 
paper. The only portions redacted are proprietary data struc-
tures not publicly shared by the software vendor.

An illustrative example of the business context document 
in action is exemplified by one of the NLQs presented which 
requested a count of follow-up letters sent to patients. The 
database does not explicitly track letters, but the business 
context document specifies that these are stored in case 
attachment files, using the field CLASSIFICATION. For 
follow-up letters, the relevant SQL query rule is defined as 
CLASSIFICATION like ’%FU Attempt%’, bridging the 
gap between user queries and the database structure. Without 
our business context document, the LLM was unable to 
deduce this connection on its own from the raw schema.

System design and implementation
LLMs demonstrate proficiency in answering general queries, 
but they often fall short when required to extract information 
from specific contexts without domain-specific training.17,18

Fine-tuning LLMs with contextual knowledge, such as busi-
ness documents, significantly enhances their ability to gener-
ate accurate, contextually informed responses.19

To leverage this capability, we implemented a RAG-based 
pipeline tailored to SQL query generation in specific business 
contexts. While inspired by approaches described in prior 
work,20 our methodology diverges in key aspects to meet the 
unique requirements of our application. Specifically, we used 
LangChain to preprocess and split the business context docu-
ment into manageable chunks, which were then embedded 
into vector representations using OpenAI’s text-embed-
ding-ada-002 model. These embeddings were stored and 
indexed in a FAISS (Facebook AI Similarity Search) vector 
database, allowing for efficient similarity-based retrieval.

Our pipeline retrieves the top-7 most relevant document 
chunks for each user query using a similarity-based retriever 
interface. Unlike methods described in,20 which fine-tune 
retrievers and generators jointly, we rely on OpenAI’s GPT-4 
(hosted on Azure) for the generation step without additional 
fine-tuning. The retrieved chunks serve as contextual input, 
enabling GPT-4 to generate accurate and syntactically correct 
SQL queries tailored to the schema and specific requirements 
outlined in the custom documentation.

For instance, if we asked the model to “generate a pivot 
table of product family counts by group,” the system would 
combine retrieved document chunks with query context and 
ensures compliance with database schema constraints (eg, 
matching columns to tables and handling case sensitivity in 
WHERE clauses). Importantly, during testing, we explicitly 
did not allow the system to retain conversational history 
between queries to ensure that each NLQ to SQL conversion 
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was evaluated independently, avoiding any influence from 
prior interactions.

This hybrid approach—using pre-trained embeddings, 
vector-based retrieval, and generative LLMs—helps to 
improve SQL query generation contextually aligned with the 
business needs. The complete implementation details, includ-
ing source code, are available in Appendix S1.

Results
Our experiment evaluated the impact of integrating a busi-
ness context document with LLMs on the complexity and 
accuracy of SQL queries generated from NLQs. After apply-
ing our scoring algorithm to the generated SQL queries, we 
conducted a distribution analysis of the complexity scores.  
Figure 4 illustrates this distribution, categorizing SQL query 
complexity as “low,” “medium,” or “high.” These categories 
were based on scoring percentiles: queries scoring below the 
25th percentile were classified as “low,” those within 
the interquartile range (IQR) as “medium,” and those above 
the 75th percentile as “high.” This method provides an objec-
tive measure of SQL query complexity, incorporating both 
subjective expertise and quantifiable metrics like table count.

Of the 60 NLQs analyzed, 17 were categorized as “low” 
complexity, 31 as “medium,” and 12 as “high.” As outlined 
in the methods, the LLM-generated SQL queries were classi-
fied as “pass,” “partial success,” or “fail,” based on their 
accuracy. In Phase 1, where only the database schema was 
provided, the LLM achieved a pass rate of 8.3%, with 78.3% 
failing to generate valid SQL queries (Table 1). This high-
lighted the challenges of query generation without additional 
context.

The integration of the business context document in Phase 
2 significantly improved performance, increasing the pass 
rate to 78.3% (Table 2). This demonstrates the critical role of 
contextual knowledge in enhancing the LLM’s ability to gen-
erate accurate SQL queries, particularly for complex NLQs. 
Additionally, when excluding high-complexity queries, the 
LLM achieved an 85.4% pass rate, with 41 out of 48 low 
and medium complexity queries passing, and only 5 (10.4%) 
resulting in failure.

Statistical analysis using Fisher’s Exact Test revealed a 
substantial improvement, with the P-value dropping 
from .1655 without the business context to .0006 with it, 
confirming the statistically significant performance boost 
provided by contextual information. Fisher’s Exact Test is a 
non-parametric statistical test commonly used when sample 
sizes are small and the data can be represented in a contin-
gency table. This test was chosen for its robustness in han-
dling categorical data and its suitability for our dataset, 
which involved discrete counts of query results classified as 
“pass,” “partial pass,” or “fail.” The P-value from this test 
quantifies the probability of observing the data (or something 
more extreme) under the null hypothesis that there is no dif-
ference between the groups being compared—in this case, the 
performance of the LLM with and without the business con-
text document (see Appendix S1).

In our analysis:

� The P-value decreased from .1655 without the business 
context document to .0006 when the document was 
included, indicating a significant performance 
improvement. 

� A P-value of .1655 suggests that the observed difference 
could occur by chance, meaning it is not statistically sig-
nificant (typically, a P-value >.05 fails to reject the null 
hypothesis). 

� A P-value of .0006, however, is well below the conven-
tional threshold of .05, indicating that the observed 
improvement with the business context document is 
unlikely due to random chance. This confirms that the 
inclusion of contextual information significantly enhances 
the LLM’s performance in generating SQL queries. 

The improvements were consistent across all complexity 
levels, highlighting the effectiveness of contextual priming in 
improving LLM SQL generation. Despite some remaining 
challenges with high-complexity queries, these results suggest 
that business context documents are a valuable tool for 
improving database interactions and LLM applications in 
data-intensive fields.

In Phase 3, the schema was narrowed to essential tables 
without including the business context document. This phase 

Figure 4. Boxplot of SQL complexity scores.

Table 1. LLM performance with DB schema only.

Result NLQ complexity

Low Medium High Total Percent

Pass 3 2 0 5 (8.3)
Fail 11 27 9 47 (78.3)
Partial pass 3 2 3 8 (13.3)
Total 17 31 12 60

Abbreviations: DB ¼ Database; LLM ¼ Large Language Model; NLQ ¼
Natural Language Query.

Table 2. LLM performance with business context document.

Result NLQ complexity

Low Medium High Total Percent

Pass 16 25 6 47 (78.3)
Fail 0 5 0 5 (8.3)
Partial pass 1 1 6 8 (13.3)
Total 17 31 12 60

Abbreviations: LLM ¼ Large Language Model; NLQ ¼ Natural Language 
Query.
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aimed to reduce ambiguity and assess baseline performance 
with a smaller set of relevant tables. The results showed mod-
est improvements, reducing the failure rate from 78% to 
50%. However, many queries still fell into the “partial pass” 
category, meaning they would require manual intervention to 
be revised into fully functional SQL queries (Table 3). A 
“partial pass” classification indicates that the query structure 
aligns with the intended outcome but needs minimal changes 
to be executable. Manual intervention typically involves cor-
recting minor issues, such as typos or references to incorrect 
column names, while maintaining the overall structure that is 
efficient and appropriate for answering the user’s query. A 
query is classified as a “fail” if the LLM indicates it cannot 
generate a query, references the wrong tables, produces out-
put inconsistent with the user’s NLQ request, or fundamen-
tally answers the wrong question.

Fisher’s Exact Test for Phase 3 yielded a P-value of .2373, 
indicating that narrowing the schema led to modest improve-
ments but did not match the success achieved with the busi-
ness context document. These findings emphasize that while 
schema optimization can help, the comprehensive insights 
provided by the business context document play a more crit-
ical role in enhancing the LLM’s SQL query generation 
accuracy.

Discussion
Through our multi-phase analysis, this study has shown the 
significant impact of context-enriched LLMs in enhancing 
data retrieval from NLQs within PV and other data-intensive 
domains. By integrating OpenAI’s GPT-4 model with a busi-
ness context document, we markedly improved the model’s 
ability to generate syntactically precise and contextually rele-
vant queries. This approach offers a promising pathway 
toward enhancing access to complex databases and enhanc-
ing the intuitiveness and efficiency of query formulation.

Our findings indicate that augmenting the LLM with con-
textual knowledge substantially improves query generation 
accuracy. Specifically, the introduction of a business context 
document resulted in a success rate exceeding 78% across a 
wide range of query complexities, highlighting the critical 
role of context in bridging the gap between natural language 
and database queries.

Recent literature has identified similar challenges in text- 
to-SQL generation. For example, Qu et al. identify common 
issues such as schema-based and logic-based hallucinations.15

Their Task Alignment (TA) strategy aims to mitigate these 
hallucinations by aligning tasks with familiar contexts. Our 
approach, which incorporates a business context document, 
appears to effectively eliminate many of these hallucinations 
by providing detailed, domain-specific knowledge that guides 

the LLM in generating accurate SQL queries. This alignment 
reduces the risk of generating erroneous or irrelevant queries.

Moreover, the CHESS framework’s benchmarking using 
the BIRD database presents an incongruent point of compari-
son. BIRD-SQL (https://bird-bench.github.io/) contains hun-
dreds of sub-datasets; however, it does not clearly indicate 
the complexity of these sub-datasets, which may not reflect 
the challenges posed by enterprise databases like ours. Unlike 
the BIRD benchmarks, our complexity algorithm explicitly 
documents how the level of complexity was determined. Our 
enterprise database, which again contains over 500 tables 
with an average of more than 50 columns per table, encom-
passes multiple ambiguities and complex relationships. The 
database represents over 5 million safety cases, with the larg-
est table containing nearly 1.3 billion rows, and a single 
safety case may have as many as 100 products and 100 events 
reported. These characteristics significantly impact the con-
version of NLQs to valid SQL queries for retrieving relevant 
safety data. This suggests that the complexity of real-world 
applications is not adequately represented in BIRD-SQL, 
highlighting the need for more representative benchmarking 
datasets.

While our research seemingly marks a significant advance-
ment in making informatics retrieval more accessible, ena-
bling non-technical users to harness data-driven insights for 
more inclusive and efficient decision-making, it is essential to 
interpret our findings with caution. The efficacy of the busi-
ness context document was assessed with a relatively small 
set of NLQs within a single enterprise database. The scalabil-
ity and generalizability of our findings to other databases 
remain to be validated. Future research should aim to vali-
date these results across broader datasets and diverse data-
base architectures to fully understand the potential and 
limitations of our methodology.

Further advancements are necessary. Our system identifies 
key areas for additional research and development, particu-
larly in handling complex queries and resolving ambiguous 
user intents. Concerns related to scalability and implementa-
tion within large, dynamic enterprise environments highlight 
the need for future investigations to enhance the robustness 
and applicability of our methodology.

Conclusion
This study demonstrates the potential of leveraging LLMs, 
specifically OpenAI’s GPT-4, within a RAG framework to 
improve data retrieval from complex PV databases. Integrat-
ing a business context document significantly enhanced the 
model’s ability to generate accurate and contextually relevant 
SQL queries from NLQs, with the success rate increasing 
from 8.3% using the database schema alone to 78.3% with 
the context document.

Our findings emphasize the critical importance of contex-
tual knowledge in bridging the gap between natural language 
and database queries, making data retrieval more intuitive 
and accessible for non-technical users. While these results are 
promising, further validation is needed to assess the scalabil-
ity and generalizability of our approach across different data-
bases and larger datasets.

Future research should aim to validate these findings across 
a variety of database architectures and more extensive data-
sets, exploring the methodology’s broader potential and limi-
tations. Additionally, improving the system’s ability to 

Table 3. Phase 3 LLM performance with narrowed schema definition.

Result NLQ complexity

Low Medium High Total Percent

Pass 4 2 0 6 (10)
Fail 6 18 6 30 (50)
Partial pass 7 11 6 24 (40)
Total 17 31 12 60

Abbreviations: LLM ¼ Large Language Model; NLQ ¼Natural Language 
Query.
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handle complex queries and ambiguous user intents will be 
key to future development.

In summary, this study introduces a novel approach for 
employing LLMs in data retrieval through NLQs, improving 
the accessibility of PV data analysis. By integrating LLMs 
with a business context document, we propose a flexible pipe-
line that can be applied across multiple sectors, making com-
plex databases more accessible to a wider range of users and 
supporting data-driven decision-making in various domains.
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