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Large language models (LLMs) are useful tools with the capacity for performing specific types of 
knowledge work at an effective scale. However, LLM deployments in high-risk and safety-critical 
domains pose unique challenges, notably the issue of “hallucinations”, where LLMs can generate 
fabricated information. This is particularly concerning in settings such as drug safety, where 
inaccuracies could lead to patient harm. To mitigate these risks, we have developed and demonstrated 
a proof of concept suite of guardrails specifically designed to mitigate certain types of hallucinations 
and errors for drug safety, with potential applicability to other medical safety-critical contexts. 
These guardrails include mechanisms to detect anomalous documents to prevent the ingestion of 
inappropriate data, identify incorrect drug names or adverse event terms, and convey uncertainty 
in generated content. We integrated these guardrails with an LLM fine-tuned for a text-to-text task, 
which involves converting both structured and unstructured data within adverse event reports into 
natural language. This method was applied to translate individual case safety reports, demonstrating 
effective application in a pharmacovigilance processing task. Our guardrail framework offers a set 
of tools with broad applicability across various domains, ensuring LLMs can be safely used in high-
risk situations by eliminating the occurrence of key errors, including the generation of incorrect 
pharmacovigilance-related terms, thus adhering to stringent regulatory and quality standards in 
medical safety-critical environments.

The integration of large language models (LLMs) into the fabric of numerous applications has positioned them 
as instrumental in navigating the complex challenges in biology and medicine1. The breadth of their application, 
combined with their rapid evolution, has created anticipation that LLMs will be near-universal solvers 
across the biomedical landscape1–3. Yet, alongside this growing optimism, there is an increasing cognizance 
of their limitations that may impede their applicability in specific areas of scientific inquiry. Prominently, the 
phenomenon of “hallucinations”—instances of generating baseless information—stands as a pivotal concern4. 
This phenomenon is a byproduct of the mechanisms underpinning LLMs, which rely implicitly on internally 
stored “memories” for response generation, without explicit grounding in verifiable facts5. LLMs also face 
challenges in communicating the uncertainties of their outputs to end-users effectively. Though measures of 
uncertainty can sometimes be quantified, validating the trustworthiness of LLM outputs remains a challenge6,7 
including within the biomedical domain8.

In contexts where inaccuracies can result in severe consequences, particularly in decision-making processes 
affecting patient safety, the issue of LLM hallucinations and omission of key information9 becomes acutely 
significant10. One critical domain is drug safety, also known as pharmacovigilance (PV), which involves the 
ongoing surveillance for adverse events (AEs) linked to pharmaceutical medicines and vaccines11. Given 
the limitations of pre-market trials in fully characterizing a drug or vaccine’s safety profile, PV relies on the 
collection and analysis of spontaneously reported AEs, vital for continued assessment of a product’s benefit-
risk. The reported information is transcribed into an Individual Case Safety Report (ICSR) which serves as 
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the standardized international framework for AE reporting, encompassing a vast array of information sourced 
globally in varied formats and demanding timely review and processing. The non-random process by which 
ICSRs are collected, coupled with the prevalence of incomplete or erroneous data, underscores the necessity for 
clinical review to unearth potential safety signals for further exploration and serve as the primary data source to 
formally evaluate a potential causal association12. Consequently, a challenge within PV lies in the efficient parsing 
of extensive, noisy, and often incomplete domain-specific textual data, some of which may be contradictory, to 
identify safety signals meriting additional investigation.

The propensity of LLM to hallucinate and omit key details presents a considerable hazard if applied naively 
within the PV domain, which is inherently safety-critical. For instance, an LLM might erroneously suggest that 
an ICSR details a serious AE such as liver failure while this is not mentioned in the source report, potentially 
signaling a false-positive safety concern and diverting resources from legitimate safety investigations. Moreover, 
understanding how LLMs are integrated with human end-users becomes essential, as human-mediated oversight 
systems will likely remain indispensable for certain tasks within safety-critical applications for the foreseeable 
future.

Preventing and mitigating hallucinations involves the implementation of “guardrails” around LLMs to shape 
and restrict their output. While the term guardrail lacks a precise definition in this context, it is here understood 
as a series of constraints applied to either an aspect of the LLM or its output to ensure adherence to predefined 
criteria. One approach involves “structural guardrails,” defined as mechanisms ensuring model outputs maintain 
a consistent structure (e.g., CSV, XML, JSON)13, thus obviating the need for further processing of free text to 
extract pertinent information.

This paper focuses on “semantic guardrails,” aimed at verifying the accuracy of LLM output by checking 
for biased or problematic content and coding errors. These guardrails may be “hard,” offering clear binary 
outcomes, or “soft,” providing probabilistic assessments regarding the potential error in the output. Within 
pharmacovigilance, such guardrails are pivotal in enforcing the avoidance of errors that may impact safety 
decisions resulting in patient harm analogous to medical “never events” incidents in clinical practice contexts 
identified by U.S. and U.K medical organizations as wholly preventable and unacceptable14.These never 
events, deemed intolerable and preventable, have the potential to lead to significant harm or mortality and 
usually trigger comprehensive investigations to avert recurrence. Examples include severe allergic reactions to 
contraindicated medications or dosing errors and are “serious incidents that, due to the provision of systemic 
protective barriers at a national level, are completely preventable and should have been preemptively addressed 
by all healthcare providers”15, analogous to guardrails. Hence, to function within safety-critical domains like PV, 
semantic guardrails must ensure the absolute prevention of defined “never event” errors that have the potential 
to adversely impact pharmacovigilance decision-making14,16.

In our investigation, we introduce a comprehensive set of both hard and soft semantic guardrails designed 
to enable LLMs to function within the high-risk, safety-critical environment of PV. Focusing on the complex 
and expansive data processes integral to PV, our research specifically addresses the challenge of processing 
multilingual ICSR intake and analogous processing within a real-world PV system. This encompasses a text-
to-text task that involves both structured to unstructured data conversion and translation. Our guardrails were 
specifically tested on the task of transforming Japanese language ICSRs (combined unstructured and structured, 
tabular data with numeric codes for various biomedical concepts) into English narrative text for subsequent 
analysis by safety professionals.

We identified multiple potential failure modes for LLMs within this context and engineered a series of 
guardrails to mitigate these risks (Fig. 1). We implemented a hard semantic guardrail to address model outputs 
with generated drug or vaccine names not present in the source text, utilizing existing drug safety dictionaries 
and tools to ensure consistency of key drug- and vaccine-related information between the source text and the 
LLM-generated English narrative. Additionally, we incorporated two soft semantic guardrails to communicate 
the model’s uncertainty regarding the quality and accuracy of both the input text and its final translation, thereby 
flagging instances potentially requiring further human review. While our study concentrates on a critical, real-
world case in PV, we posit that the framework developed herein holds relevance across a multitude of medical 
safety-critical domains.

Methods
A schematic of the workflow is presented in Fig. 1, including processing the ICSRs, the LLM tasks, creation 
of standards and the evaluation of LLM generated case reports, the sequential guardrail processing, and the 
evaluations of the guardrails.

Data acquisition
The dataset utilized in this study was sourced from GSK’s global safety database as part of a collaboration by 
providing Harvard University, Cambridge, Massachusetts, USA, access on a privately maintained, secure server 
equipped with advanced graphics processing units (two 80 GB A100s). This dataset encompasses over 2 decades 
of ICSRs, with more than 4 million cases available for review. For the purposes of our assessment, the analysis 
concentrated on the original ICSRs as submitted to GSK, prior to any form of human review. This excluded any 
subsequent modifications or additional data reported post-initial submission, including follow-up details.

Analysis of individual case safety reports
Overall, we use ICSRs combined with important data fields in PV such as the level of seriousness of the adverse 
event to produce single chunks of text that are used as the “source” text to be fed into the LLM. Specifically, 
spontaneously reported AEs are transcribed into an ICSR which serves as the standardized international 
framework for AE reporting. A valid ICSR for entry into the GSK Global safety database is comprised of four 
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essential elements: (1) at least one identifiable reporter; (2) an identifiable patient; (3) at least one suspect adverse 
reaction; and (4) at least one GSK suspected product17. Pharmaceutical entities often accumulate reports in large 
volumes from various data partners. Whenever feasible, these reports are exchanged using standardized E2B 
XML documents18, which offer structured fields alongside narrative descriptions of each case. For our study, we 
treated the entirety of information initially available as a singular data point. This approach included aggregating 
additional structured fields such as the country of the primary source, country of occurrence, level of seriousness 
(including death, life-threatening situations, hospitalization, disability, congenital anomalies), relevant dates, 
details of the reporter (name, organization, country), patient demographics (age, sex), primary reaction of the 
patient, and the implicated medicinal product.

Development of a multilingual corpus for LLM pretraining
We constructed a multilingual corpus of ICSRs to serve as the dataset for text-to-text fine-tuning of an LLM. 
To achieve this, we aligned the raw text from the submitted ICSRs (source text) with the human-generated 
summaries provided by a third-party contractor (original standard target text) to create text pairs in four 
languages: Japanese, Spanish, French, and German. These languages were selected due to their prevalence in 
the database and, particularly for Japanese, the complexity they present in translation tasks. While our analysis 
primarily concentrates on Japanese due to the high number of ICSRs available in this language, the LLMs are 

Fig. 1. Graphical summary of the large language model (LLM) workflow. We used extra structured fields 
and unstructured narrative texts from individual case safety reports (ICSRs), along with historical matched 
language examples, to fine-tune an LLM. We added a specific task prefix, and generated an English narrative 
from a Japanese ICSR, and finally checked this process via several guardrails: the document-level uncertainty, 
drug and adverse event matching, and token-level uncertainty guardrails (see Methods section).
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designed for multilingual application. To integrate the additional structured fields, we prefixed each one to the 
source text of the ICSR in the format:

field_name_1: field_value_1; field_name_2: field_value_2.
To fine-tune an LLM or employing it in text generation, we also prefixed a brief instruction indicating the 

specific task for the model, such as “Translate the following Japanese case report into English narrative text” for 
translations from Japanese to English. Our pretraining corpus was enriched further with direct translation pairs 
from the OPUS-100 corpus19, a comprehensive multilingual translation dataset covering 100 languages, thus 
furnishing additional examples for model fine-tuning on translation tasks involving parallel language sets. The 
volume of pretraining examples is detailed in Table 1.

Development of the ICSR translation LLM
Model fine-tuning and generation
A graphical flow chart describing this process is available as Supplemental Fig. S1.

In our study, we conducted an evaluation of three LLMs with parameter sizes ranging from 700 million 
to 7 billion: mt5-xl, mpt-7b-instruct, and stablelm-japanese. The criteria for selecting these models included 
the relevance of their initial pretraining objectives, the scale of the models, and the computational resources 
required for their operation. These models underwent further fine-tuning for translation tasks, utilizing a corpus 
composed of 131,037 examples from ICSRs and texts from the OPUS-100 dataset (Table 1). The training process 
was applied uniformly across Japanese, Spanish, French, and German, adopting a split of 70% for training, 15% 
for validation, and 15% for testing. This distribution ensured a balanced representation of languages and sources 
(ICSR vs. OPUS-100) within each set. Fine tuning was done by iterating over the training corpuses input-output 
pairs (either the structured-unstructured PV pairs or the direct translation pairs). For each, the model used 
either the joined structured-unstructured ICSR or the source language as input, and its output was compared to 
the target language report or target language direct translation.

Generation was done for each of the ICSRs, including those in validation and testing. This involved running 
the beam search algorithm for each input, and simply storing those for downstream computing of metrics or 
human evaluation tasks.

For the generation phase, we evaluated a variety of hyperparameters. Utilizing beam search20, we experimented 
with different settings for the temperature (0.5, 0.7, 1.0, 2.0) and beam counts (3, 10, 25). Additionally, in 
our application of contrastive search21, adjustments were made to the α values (0.2, 0.6, 0.9) and the top-k 
selections (4, 8, 16, 64). The optimal set of generation hyperparameters was determined based on the BLEU 
score22 performance on the validation set, ultimately selecting a contrastive search configuration with α = 0.2 
and top-k = 16.

Model evaluation
In our initial assessments, we concentrated on evaluating the Japanese translation quality, a task of significant 
relevance in PV due to the human resources required with securing proficient translators for Japanese drug 
safety data. We conducted comparative analyses of the three models, utilizing per-token perplexity as a metric on 
a validation subset comprising 7820 ICSRs, which constitute approximately 13% of the total Japanese ICSRs in 
our dataset. For the best performing model, we further explored its translation capabilities by applying standard 
machine translation evaluation metrics, including the BLEU score22, SACRE-BLEU score23, and word error 
rate24.

Expert human evaluation of the target text
After finalizing our model, we performed a comprehensive evaluation aimed at assessing its efficacy in translating 
cases that were originally documented in Japanese. This analysis involved 210 cases, all sourced from Japan and 
initially documented in Japanese. The selection of these cases was governed by a predefined set of criteria. Our 
goal was to achieve an even distribution across various product categories, with our sample evenly divided 
among vaccines, general medicines, and specialized products, like those in oncology. Priority was given to 
serious cases that had been subjected to in-depth analysis upon their reception, thus offering a comprehensive 
insight into potentially critical incidents. Additionally, we sought to maintain a balanced representation of 
products across these categories. The cases spanned the entire 20-year period for which we had data, ensuring 

Number of ICSRs

Pretraining examples (GSK), total 131,037

 ICSRs in Japanese 58,855

 ICSRs in Spanish 13,264

 ICSRs in German 30,370

 ICSRs in French 28,548

Japanese direct translation pairs (OPUS-100) 10,000

Spanish direct translation pairs (OPUS-100) 10,000

German direct translation pairs (OPUS-100) 10,000

French direct translation pairs (OPUS-100) 10,000

Table 1. Numbers of individual case safety reports (ICSRs) and direct translation pairs.
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temporal representativeness. Finally, our case selection employed random sampling within these specific strata 
to reflect the overall distribution of Clinical Utility Score for Prioritization (CUSP) scores25 found in our entire 
ICSR database. This methodology was designed to secure a broad and diverse representation in the completeness 
of the cases under review.

Phase 1: establishment of high-quality baseline translations
The first phase was dedicated to creating a baseline foundation of high-quality translations. Each of the 210 
Japanese ICSRs, available in the database as previous translations into English by an external contractor, was 
subjected to a thorough review by two independent PV experts fluent in both Japanese and English. This 
double-blind review not only verified the translations for accuracy in comparison to source text and fluency, but 
also established a robust English “ground truth” for further comparative analysis. No adjudication review was 
required for this comparative assessment as, as the review comments of both reviewers were made available for 
phase 2 reviewers, with the ability to seek clarity where required to support phase 2 review.

The outcomes from this phase’s evaluation are detailed in the supplementary materials, with Tables S2, S3, 
and S4 offering a juxtaposition of the initial standard target texts against the evaluations conducted by the 
bilingual PV specialists.

Phase 2: evaluation of LLM translations against established baseline
In the next phase, we assessed the LLM-generated English translations against the “ground truth” translations 
derived in Phase 1 of the experiment. This assessment was carried out by PV experts proficient in English, 
with experience in safety evaluations. Employing a carefully designed evaluation framework, they conducted 
independent dual reviews of each translation, incorporating both a detailed five-category assessment system 
(Table S1 for category specifics) and binary evaluation criteria (Table 4). In instances of binary evaluation, the 
presence of any noted error category, observed even once, warranted its marking, with evaluators having the 
option to detail the specific nature of the error. Moreover, the experts assessed the clinical acceptability of each 
processed ICSR for reporting to regulatory agencies. Any discordance among the evaluations was resolved by 
an additional independent senior expert, this need is underpinned by the low inter-rater agreement between 
clinical experts when evaluating the same drug-event ICSR cases has been well documented in the medical 
literature26–29. For the four-category criteria, evaluations were made on a five-point Likert scale30, with ratings 
ranging from 1 (least favorable) to 5 (most favorable), as detailed in Table S1 in the supplement for the definitions 
of each rating level.

To streamline the evaluation, a custom web application was created, affording the reviewers the ability to 
methodically compare translations side-by-side and to log their assessments using dropdown menus and open-
ended text fields. A screen capture of this web application’s graphical user interface is available in Supplemental 
Fig. S2. Cases were randomly distributed among a team of reviewers to minimize the potential for individual 
reviewer and selection bias. This application was designed with tracking capabilities for capturing individual 
evaluator responses, and it was programmed to automatically signal for independent expert adjudication should 
discrepancies between reviewers emerge.

LLM guardrails for ICSR translations
We developed one hard and two soft semantic guardrails for this application, as described below in order of 
application in the ICSR processing pipeline:

Document-level uncertainty quantification (DL-UQ)
This soft guardrail identifies submitted documents that are unlikely to be ICSRs reports (based on statistical 
probabilities as reported by a model, as opposed to using the 4 aforementioned validation criteria for ICSRs). To 
support potential automation of ICSR intake, this guardrail detects documents unlikely to be an AE report and 
prevents any LLM processing of these reports. The DL-UQ guardrail first creates a document level embedding 
by performing an average pooling operator to the token-level embeddings created using the source language 
encoder LLM. Next, a k-nearest neighbors’ Euclidean distance is calculated between the embedding for the 
submitted document and a cache of ICSR embeddings created using the same methodology from the training 
data. This distance is a measure of uncertainty according to the LLM as it measures how anomalous a new 
submission is relative to the documents the model has seen before and can be used to automatically discard 
a submission or flag it for review. A distance threshold can be tuned to achieve a desired trade-off between 
sensitivity and specificity.

MISMATCH (drug and AE mismatching)
This hard guardrail enforces a “never” event by identifying drug names that appear in either the source text or 
target text but not both, indicating that a drug name has been either mistranslated or hallucinated. This kind of 
error represents a so-called “never event” because incorrectly identifying a drug in an ICSR could have dire safety 
consequences and should be avoidable. To implement this guardrail, we matched (with regular expressions) both 
the source and target texts for any mentions of drugs; similarly, this was implemented for AEs. Then, we used 
two dictionaries (a custom in-house drug dictionary from the global safety database, and MedDRA, Medical 
Dictionary for Regulatory Activities31; 28 K preferred terms) to find the matching terms, and whether the set 
difference had any elements corresponding to unmatched terms. The dictionary matches allowed generic-trade 
name associations for drugs. Note: this guardrail did not match terms that are slightly misspelled drug names or 
AEs, since those are not matched by the regular expression-based text matching comparison with terms in the 
dictionaries. If there was a mismatch, this hard guardrail would trip and the eventual integrated system would 
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route outside of the standard case processing and for further adjudication, either through post-processing or 
human-in-the-loop assessment and correction.

Token-level uncertainty quantification (TL-UQ)
This soft guardrail identifies potential LLM errors at word and sub-word levels. Each token in the vocabulary is 
assigned a log probability by the LLM, and we take the entropy of this multinomial distribution as the token-level 
uncertainty score. Intuitively, the more entropy in the predictive distribution of the next token, the “less certain” 
the model is in generating that specific token.

Guardrail assessments
We assess each of the guardrail types in different ways. For the DL-UQ guardrail, we compare the score of 
real inputs to fake inputs. For the MISMATCH guardrail by counting the types of instances where the model’s 
outputs different from humans’. For the TL-UQ guardrail, we produce visualizations that flag each tokens’ span 
with its correlated score, and also comparing the level of overall TL-UQ flagging to the human rated error rates 
in certain categories.

We assessed each guardrail as follows:
For DL-UQ, using the train validation split described above (see “Data pre-processing” and “Model 

evaluation”), we sampled 80 example texts from the training and validation sets, and produced a score for each. 
We then injected a sample of 25 “extraneous samples”, which included 14 Japanese Wikipedia articles, 7 Japanese 
fake case reports (in a similar format as the original case reports), 2 Japanese texts that have nothing to do with 
PV, and 2 non-Japanese texts. We plotted the numeric score for each example to evaluate the separation and 
reported the area under the receiver operator curve (AUROC) for a discrimination between validation and 
extraneous samples.

For MISMATCH, the primary evaluation of this guardrail was whether the specific targeted “never event” 
is always flagged when the target text contains that error. To this end, we used the human evaluators’ flagged 
drug errors as the exemplar never events on a (programmatically) randomly selected sample of 20 cases. We 
calculated the fraction of cases caught by the MISMATCH guardrail where the human evaluators indicated 
a drug name had been hallucinated spontaneously. The MISMATCH guardrail was also useful for the other 
categories. We divided its fixes in the “generic-trade name” category by how the specific drugs mentioned were 
flagged by the MISMATCH guardrail itself (“fixed by mismatch guardrails”) or by a separate system that we 
added to check if generic-trade names match by looking for parentheses (“direct generic-trade name checking”). 
For this, we used the existing pairs of generic-trade names from the dictionary afterwards. We divided fixes 
in the “drug spelling issues” section by whether they were directly fixed by the guardrails (“fixed by mismatch 
guardrails”) or not fixed, which happened when the same drug had both correct and incorrect spellings in the 
LLM generated output (“multiple mentions”). In these cases, the guardrail did not find the misspelled drug by 
matching the text in the LLM output in English, and it did not detect that the drug mention in the Japanese 
source text is unmatched, because the drug is also spelled correctly. The frequency of the MISMATCH guardrail 
flagging individual drug and AE names is evaluated by a ”missrate”, which is a measure of the frequency of 
these erroneous outputs that are not fixed by this guardrail. A missrate of 1.0 indicates that, for example, the 
source text contained a number of drugs or AEs that are not matched to any translated terms in the target text. 
In the standard translations used to train the model, we expect this to be 0.0, so any missrates > 0.0 are due to a 
limitation of the drug or AE lists, or a misspelling of these terms.

For evaluation of the TL-UQ guardrail, we showed a qualitative example of a visualization flagging spans 
of uncertain text. In that example, we correlated the flagged spans with a human evaluator’s assessment of 
specific errors in that case. Spans were flagged by differing intensities of text highlighting, from least to most, 
corresponding to the 10th percentile, 5th percentile, and 1st percentile most entropic predicted tokens. 
Quantitative evaluations were conducted by stratifying each reviewed case by “Is the case clinically accurate”, 
“Wrong name or information”, and “Incorrect AE/Wrong outcome” and assessing the case entropy score (an 
average of the individual token entropies) for each case in each category.

Results
Translation model development and evaluation
We considered three LLMs, that at the time of beginning this study, were performant multilingual models that 
could run given local resources on our internal servers: mt5-xl, MPT-7B, and stablm-japanese. We first assessed 
how well each could translate ICSRs from Japanese to English without any task-specific fine-tuning and then 
assessed this ability when the models were fine-tuned with ICSR data (Table 2).

These results indicate that none of the base models are suitable for translation “off the shelf ” (Table 2). Fine-
tuning improved all models by a significant margin and only mt5-xl reached a suitable perplexity after fine-
tuning (Table 2). This is most likely due to this base model being pretrained explicitly on Japanese text, while 
the others likely only encountered Japanese text during their initial pretraining in an extremely small number of 
instances. On this basis, we decided to move forward with the mt5-xl model for further evaluation.

Traditional metrics of machine translation quality for mt5-xl show a BLEU score of 0.39, which is considered 
to be associated with relatively high-quality translations32, as are the Sacre-BLEU score of 0.44 and the word 
error rate of 0.73.

Preliminary feasibility study
In a pilot assessment of 20 translations, we found that 16/20 (80%) were deemed acceptable overall. Supplemental 
Table S6 shows a breakdown of the kinds of errors identified by human experts on this pilot dataset. The most 
common kinds of mistakes were miscellaneous errors, which includes misspellings and grammatical errors.
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Phase 1 evaluations: evaluation of existing standard produced target text
Using the rubric in Supplemental Table S1, the reviewers evaluated the quality of the original standard supplied 
target texts. In Table S2, we report summary statistics evaluating whether the standard supplied target text 
sufficiently captured the same meaning as the source texts. Supplemental Table S3 reports the human-assessed 
clarity of the source texts and incorporates a two-reviewer system to get an inter-rater agreement in this metric.

Both rater 1 and rater 2’s median scores were 4.0 (mostly clear and easy to read). Calculating the inter-rater 
agreement using Cohen’s Kappa, and quadratic weights, gave a Kappa of 0.542. The interpretation of this is 
typically domain-specific and variable with the number of categories, but in this case represents a much better 
than random association between the raters and shows consistency in the clarity of the source material.

Supplemental Table S4 reports the Phase 1 reviewers’ assessment of the translation accuracy between the 
standard provided source text and the target text. The human evaluations from the Phase 1 component, in which 
we checked the set of original data fed into the model (the source ICSR plus the “ground truth” translation), show 
errors and other issues with the input data. The columns represent, e.g. for “Added information”, that there was 
additional text in the standard provided source text relative to the target text.

Phase 2 evaluation: expert assessment of LLM produced translations
We evaluate the LLM produced translations via the human reviewer’s Likert-like criteria (Table 3) and binary 
criteria (Table 4). When compared to the existing human translation on the same source text in the database, 
slightly fewer cases had “perfect” (5) clarity scores when generated by LLM (45% vs 56% with human translation). 
For most categories, the translations were rated as 3 or higher, indicating that they were generally considered 
acceptable. The notable exception concerned correctness of the LLM translation, which was rated 2 for 12.6%, 
indicating significant errors that would affect the interpretation (Table 3).

Following the global assessment of the suitability of the translations, a fine-grained assessment was 
performed by PV experts proficient in English to detect the presence of different error categories in the target 
text. Adjudication was required by an independent senior PV expert if discordance amongst the evaluations 
were identified. The most common areas of discordance were “Nonsensical phrases” (46%) and "Wrong dates/
times" (42%), and a summary of adjudication is included in the supplemental Table S5.

Low inter-rater agreement between clinical experts when evaluating the same drug-event ICSR is not 
uncommon in pharmacovigilance. The results (Table 4) showed the LLM translation had errors in categories 
including dates/times (60% error rate), drug names (59% error rate), AEs (66% error rate), and 62% had 
nonsensical phrases, including grammatical errors. In the “Other errors” category, the most frequent were typos 
in drug names, missing causality information, repeated information, incorrect specification of concomitant 

Evaluation criteria

Score

5 4 3 2 1

Is the original translation provided by the human clear? 119 (56.7%) 72 (34.3%) 16 (7.6%) 3 (1.4%) 0 (0%)

Is LLM translation clear? 32 (15.2%) 98 (46.7%) 56 (26.7%) 21 (10.0%) 3 (1.4%)

Is the LLM translation complete? 82 (39.0%) 70 (33.3%) 37 (17.6%) 21 (10.0%) 0 (0%)

Is the information in the LLM translation correct? 19 (9.0%) 68 (32.4%) 91 (43.3%) 32 (15.2%) 0 (0%)

Is there unnecessary or extraneous information in the LLM translation? 97 (46.2%) 78 (37.1%) 28 (13.3%) 3 (1.4%) 4 (1.9%)

Amount of key* (drug safety related) information in the LLM translation not present in the source text 108 (51.4%) 48 (22.9%) 36 (17.1%) 11 (5.2%) 7 (3.3%)

Table 3. Phase 2 frequencies of each error type in large language model (LLM) generated target text, as 
determined by human drug safety experts. A score of 5 in each category means the target text was essentially 
without error, 4 indicates minor errors that do not affect interpretation, 3 indicates errors that might have 
a small impact on interpretation, 2 indicates an error that would change interpretation, and 1 indicates an 
unacceptable error. See Supplementary Table S1 for a mapping of the score to the specific questions presented 
to the human reviewers.

 

Perplexity

Base model

 mt5-xl 2.72 × 103

 mpt-7B instruct 2.20 × 107

 Stablelm-Japanese 1.09 × 106

Fine-tuned models

 mt5-xl 1.43

 mpt-7B instruct 113

 Stablelm-Japanese 131

Table 2. Per-token perplexity scores on held out data in the validation set, before fine-tuning (base model) and 
after fine-tuning on a parallel language corpus (fine-tuned models).
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medications, incorrect inferred indications, incorrect or missing batch number, and other errors that overlapped 
with those in other categories (e.g. wrong date).

Assessment of DL-UQ guardrail
The DL-UQ metric was applied to training, validation, and non-ICSR Japanese documents. Figure 2 shows that 
the non-ICSR documents typically had higher distances to their closest training sample in embedding space 
and, with three counterexamples, can be discriminated from training and validation examples without training.

The distribution demonstrates separation of the assigned scores for the different categories of cases. Although 
not completely separated, the separation of the validation and extraneous samples corresponds to an AUROC 
in the validation data of 0.80.

Assessment of MISMATCH guardrail
Figure  3 shows an interface that illustrates the drug and AE MISMATCH guardrail. With this interface, 
unmatched entities are quickly highlighted, allowing downstream users of this system to understand the specific 
mismatches that would lead the system to re-route the case to automatic or human-in-the-loop adjudication, 
and for qualified users to identify and resolve specific issues. For a quantitative evaluation, we report the success 

Fig. 2. The distribution of document-level uncertainty scores in extraneous, validation, and training samples. 
The vertical bar represents the minimum validation sample score that is greater than all the validation and 
training samples.

 

Error category Number (%)

Source contains contradictions 30 (14%)

LLM contains contradictions 86 (41%)

Wrong drug name or information 127 (60%)

Wrong dosage 34 (16%)

Wrong dates/times 135 (64%)

Incorrect/missing AE/wrong outcome 149 (71%)

Rechallenge/dechallenge errors 13 (6%)

TTO issues 48 (23%)

Nonsensical phrases 135 (64%)

Other errors 157 (75%)

Is the case clinically accurate? 73 (35%)

Table 4. Phase 2 fine-grained assessment of the presence of any error in the target text for several important 
error categories. LLM large language model, AE adverse event, TTO time to onset.
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rate of the MISMATCH guardrail in identifying one “never event”, a subset of human evaluator-identified 
drug issues, in a randomly selected set of 20 cases from the 210 that were evaluated. As can be seen in Fig. 4, 
all instances of the never event, “spontaneously hallucinated drug names”, were correctly identified by the 
MISMATCH guardrail.

In addition to the error type which we termed a never event, “spontaneously hallucinated drug names”, Fig. 4 
shows other error categories, including “dictionary incompleteness issues” and “drug spelling issues”. Since 
these guardrails were designed based on known translated maps of generic and trade name drug pairs between 
English and Japanese, limitations in these dictionaries (that PV experts can spot) lead to guardrail-unaddressed 
but human-spotted errors, as seen in the “dictionary incompleteness issues”. For the “drug spelling issues”, the 
above mentioned phenomena of multiple mentions makes this specific area difficult to address with this current 
version of guardrails, and as such there were instances of misses in that category as well.

The missrates for the MISMATCH guardrail are summarized in Supplemental Fig. S3 (comparing the model’s 
outputted target text to the source text) and Supplemental Fig. S4 (comparing the original standard’s target 
text to the source text). There were significant amounts of cases with a high ratio of unmatched adverse events, 
despite using the original standard source translations. Notwithstanding the reviewers’ noted imperfection of 
those translations (see the Phase 1 section), the difference could be explainable by the increased number of 
ordinary words that are found in AEs. Additionally, comparing these figures to the Fig. 4, we note in addition 
to adverse events having higher missrates overall, drugs have significant missrates in categories beyond what we 
describe as “spontaneously hallucinated drug names”.

Assessment of TL-UQ guardrail
An example of a visualization of TL-UQ is shown in Fig. 5 and highlights the distribution of the entropy score, 
which may facilitate efficient and targeted human-in-the-loop review. Figure 6 shows the distributions of TL-
UQ uncertainty scores, stratified by clinical accuracy, wrong drug or information, and incorrect/missing AE/
wrong outcome. Mann–Whitney U tests (using a Bonferroni correction with n = 9 trials) revealed significant 
differences in in the “clinical accuracy” stratification (Yes vs. No, adj. p-value of 0.0031, Yes/No vs. No, adj. 
p-value of 0.043) and the “wrong drug” stratification (Yes/No vs. No, adj. p-value of 0.028). In each of these cases, 
the trend was the more “correct” direction. More clinically accurate, less incorrect drugs/AEs trended towards 
a higher uncertainty score, implying that entropy correlates negatively with the model’s human evaluated 
performance. The observed trend of higher entropy scores correlating with more clinically accurate outputs and 
fewer incorrect drug mentions may be interpreted as counterintuitive. However, one possible explanation is that 
the distribution of entropy scores reflects inappropriate model confidence, where the model is more confident 
in its predictions for cases it is more likely to get wrong. Further investigation is needed to fully understand this 
pattern, but the results suggest that entropy scores, even at the token level, can provide a useful, if subtle, signal 
of the model’s likely correctness on a given case (see Fig. 5 for example).

Fig. 3. Illustration of guardrails filtering matched and unmatched drug terms and adverse event (AE) terms 
in the original Japanese ICSR and the LLM produced English case report. Text spans in blue indicate AEs that 
were successfully matched between the two texts while spans in yellow indicate AEs that were unmatched. 
Spans in green represent matched drugs while spans in red represent unmatched drugs. The section “narrative” 
in the Source Japanese ICSR text (the first word) precedes the unstructured text data, and every field after the 
heading “rest_of_fields” (shown within the text) encompass the rest of the fields.
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Discussion
Our investigation represents a significant step in the application of LLMs within PV, a field where accuracy and 
safety are paramount. We have explored one of the first integrations of LLMs into the PV workflow, particularly 
focusing on translating Japanese ICSRs to English. Through the deployment and critical assessment of both 
hard and soft semantic guardrails, our work confronts the critical challenges associated with LLMs, namely the 
propensity for hallucinations and the inherent uncertainties associated with model predictions. These approaches 
are complementary and therefore should be used in conjunction with other strategies to improve the quality of 
LLM outputs (e.g., temperature adjustments and prompt engineering). Even with safety-critical applications, 
there is variability in tolerance to inaccurate outputs: the impact of some issues could be so significant that 

Fig. 5. Example flagged spans using the TL-UQ guardrail. Differing levels of red highlighting correspond to 
increasing relative scores: least color saturation: between 10th percentile and 5th percentile scores for the whole 
text. Medium color saturation: between 5th and 1st percentile scores. Least color saturation: 1st percentile and 
above scores.

 

Fig. 4. Counts of reviewer-identified drug error categories and mismatch guardrail fixes thereof. For each 
category, counts are given indicating which of the errors had been flagged.
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safeguards are needed. In the context of LLM usage, safeguards could be guardrails in addition to or even before 
full human review. Our findings reveal that strategic guardrail applications effectively mitigate the risk of “never 
event” errors, with our MISMATCH guardrail successfully identifying every instance of hallucinated drug 
names in our translated texts from a carefully chosen case sample, although other drug error categories were not 
universally caught, such as wrong indications and due to dictionary limitations. We anticipate in routine usage 
as part of quality systems the ability to articulate a priori that certain errors cannot occur. We also note that some 
erroneous hallucinations could be so problematic that even if human review corrected them, the risk of wrongly 
recalling them as true outputs could still be problematic: the ability to remove such errors prior to human review 
holds advantages.

Furthermore, we introduced both document-level and token-level uncertainty guardrails to facilitate a 
process that incorporates human oversight. The document-level guardrail serves to screen out irrelevant text, 
reducing unnecessary LLM processing at the ICSR intake stage, whereas the token-level guardrail flags segments 
of the generated text that exhibit low confidence. These measures immediately make outputs look less definitive 
and enable the rigorous verification of LLM outputs by skilled human evaluators, who can further investigate 
and rectify potential inaccuracies. Specifically, the token-level guardrail is designed to highlight areas of high 
entropy—signifying considerable uncertainty—for thorough review, thereby addressing potential inaccuracies 
extending beyond specific entities such as drug names or AEs. This approach adds to the burgeoning 
methodologies aimed at quantifying and communicating model uncertainties to users, supporting human-in-
the-loop review and mitigation of risks.

To our knowledge, this project is the first of its kind to develop and implement a range of guardrails for an 
LLM within the medical safety-sensitive environment of PV. As we look forward, we envision LLMs playing an 
increasingly central role in this sector, with ongoing improvements enhancing their precision and reliability. 
Nonetheless, the concept of never events, and its potential extrapolations into other medical safety critical areas, 
underscores a continuous need for robust guardrails like those we have developed here. The combination of 
LLMs with these safeguards offers a foundational model for their responsible and efficacious application in PV 
and beyond.

On the topic of scalability to other domains: the underlying approach is a set of ontology enriched guardrails 
supporting a text-to-text LLM transformations. Although this approach is still maturing in pharmacovigilance, 
other safety critical domains such as natural language machine learning tasks in medicine (report generation), 
and even non-safety critical domains in which strict accuracy could be a “nice to have”, for example in consumer 
facing LLM applications. Areas such as processing electronic health records, for instance, could use very similar 
guardrails to what we propose: since some systems include structured and unstructured data, and some tasks 
include producing natural language reports from these sources, MISTMATCH checking of e.g. the diagnostic 
concepts in the source and target could function as a guardrail in that domain.

Comparison to other hallucination detection systems: The field of generative AI has evolved quickly, and 
there are now other tools that serve to limit hallucinations in generated language output. For instance, the field 
of retrieval augmented generation (RAG) has aimed to ground LLM outputs by augmenting the context and 
pretraining with a knowledge base. The guardrails approach to reduce hallucination is complementary to RAG 
and other techniques for improving LLM reliability, which are particularly necessary in high-risk contexts; RAG 
and guardrail frameworks should therefore be used in tandem. Our hard guardrails are intended to completely 
prevent hallucinations and false negative outputs. In addition, soft guardrails are not designed to directly reduce 

Fig. 6. TL-UQ distributions. Stratifying each reviewed case by “Is the case clinically accurate”, “Wrong name or 
information”, and “Incorrect AE/Wrong outcome” and reporting entropy score distributions.
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the error rate of LLM outputs, but instead, serve to enhance the human-computer interaction by enabling more 
effective human review of uncertain segments or entire input/output instances as part of human-in-the-loop 
review and oversight processes.

How this is used by non-experts:
Since this pipeline aims to be useful to non-machine learning experts with domain expertise in 

pharmacovigilance, and in general safety critical domains, there are some additional gaps that can be closed 
in terms of usability and user experience. The uncertainty scores and TL-UQ distributions, for instance, are in 
their current form raw numbers that should be calibrated for downstream tasks based on the deployment target. 
For example, in the uncertainty score, a cutoff value of approximately 0.9 in this trial (Fig. 2) would catch the 
extraneous samples but only a minority of the training or validation samples, so a downstream piece of software 
that “alerts” users at this threshold would make this more usable.

Computational resources required to maintain:
The computational resources needed to maintain the hard guardrails are relatively minimal, since only 

relatively inexpensive operations such as text matching and looking up entries in databases were needed. The 
uncertainty quantification soft guardrail did entail running computational tasks similar to model inference, so 
this remains as limited as the end users’ ability to use the LLM’s inference in the first place.

Limitations
Our work also has several limitations that should be addressed prior to widescale deployment of guardrail 
frameworks. We focused initial evaluations of hard guardrails on the problem of drug name hallucinations, 
but there are other kinds of errors that are classified as never events, like misinterpreting exposure outcomes of 
dechallenge/ rechallenge and AEs. Furthermore, although we did not solve for drug misspellings, this represents 
a type of error that may be addressed on case intake prospectively, while it could also be resolved by using 
structured data elements, retrospectively. Further work will extend the list of PV never events and their encoding 
in the system. Lastly, token-level uncertainty guardrails represent an area of evolving research and will likely 
continue to improve as the research field produces more solutions to quantify and informatively convey LLM 
output uncertainty.

In the guardrails as presented in this work, there are two main improvement levers. Firstly, creating accurate 
underlying ontologies (such as the drug translation pairs, etc.) themselves is a challenging research task. For 
example, work to expand existing databases of drugs and side effects33 is ongoing, which when incorporated 
in our guardrails will more completely catch rare or under documented drugs or side effects. The second lever 
we believe will directly fall out of using more modern LLMs, which might (although this is subject to future 
experimentation) be able to more accurately ascribe uncertainty when appropriate, per that guardrail.

Data availability
The datasets generated and/or analysed during the study are not publicly available via GSK as they include 
sensitive, proprietary post-marketing adverse event data with individually identifiable information. As a private 
company, GSK must comply with data privacy regulations worldwide and contractual arrangements in place for 
the information sharing between GSK and Harvard. However whilst we cannot directly share individual case 
safety reports (ICSRs), worldwide unique case ID numbers (WUCINs) can be provided upon reasonable request 
(www.safetyinnovation@gsk.com) to request the ICSRs from the Regulatory Authorities. Information relating to 
AI model characteristics is available at reasonable request from the primary author.

Code availability
We’ve included the primary analysis code used to parse the human reviewer data and summarize the perfor-
mance of our system in the attached URL: https://github.com/jlpainter/llm-guardrails/. This is a public GitHub 
repository with no restrictions to access.
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